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Synthetic biology is an emerging discipline for designing 
and synthesizing predictable, measurable, controllable, 
and transformable biological systems. These newly de-
signed biological systems have great potential for the de-
velopment of cheaper drugs, green fuels, biodegradable 
plastics, and targeted cancer therapies over the coming 
years. Fortunately, our ability to quickly and accurately 
engineer biological systems that behave predictably has 
been dramatically expanded by significant advances in 
DNA-sequencing, DNA-synthesis, and DNA-editing tech-
nologies. Here, we review emerging technologies and 
methodologies in the field of building designed biological 
systems, and we discuss their future perspectives. 
 
 
INTRODUCTION 
 
With the remarkable development of sequencing technology, 
the genomes of diverse species from bacteria to human have 
been completely sequenced. The identification of unknown 
organisms via genome-sequencing analyses has also been 
rapidly performed as soon as the species are discovered 
(Pagani et al., 2012). In addition, sequencing speed has been 
greatly accelerated by the recent advent of next-generation 
sequencing (NGS) methods, which appeared in the last decade 
following the conventional, capillary-based sequencing meth-
ods. NGS methods analyze various sizes and types of DNA 
libraries more accurately, rapidly, and cheaply in a high-
throughput fashion (Mardis, 2011; Metzker, 2010; Pareek et al., 
2011; Shendure and Lieberman Aiden, 2012; Soon et al., 2013; 
Zhang et al., 2011). NGS provides powerful tools, not only to 
discover fundamental biological information, such as whole-
genome sequences, variations, and DNA-protein interactions, 
but also to apply to diagnostics and clinical uses (Encode 
Project Consortium et al., 2012). For instance, the first human 
genome projects required 10 years and 3 years for sequencing 
and analysis, respectively; whereas current NGS technology 
allows the sequencing of multiple human genomes in a single 
run, requiring only a single week and reagent cost of less than 
$5,000 per genome (Lander et al., 2001; Soon et al., 2013; 
Venter et al., 2001).  

The genome sequences contributed tremendously to all bio-
science-related studies across biochemistry, agriculture, bioen-

gineering, and medicine, as well as to the bioindustrial produc-
tion of value-added products such as platform chemicals (Du et 
al., 2013; Esvelt and Wang, 2013; Heitzer et al., 2013; Reyes et 
al., 2012; Shokralla et al., 2012). However, the genome se-
quences did not merely make contributions to the deeper un-
derstanding of the molecular mechanisms of cellular function; 
they also provided engineering targets for various genome-
manipulation technologies such as zinc-finger nuclease (ZFN) 
and transcription activator-like effector nucleases (TALENs) 
(Bedell et al., 2012a; Cong et al., 2013; Jiang et al., 2013; Kim 
et al., 2012a; Mali et al., 2013; Wang et al., 2012a). These re-
cent breakthroughs in genome-engineering technologies are 
now offering new opportunities to produce rationally designed 
biological functions, which are critical issues that should be 
addressed by synthetic biology.  

A major objective of synthetic biology is the design and engi-
neering of biologically based parts, novel devices, and systems, 
as well as the redesign of existing biological systems (Endy, 
2005; Nandagopal and Elowitz, 2011; Pleiss, 2006). A wide 
range of biological systems can be engineered to add new 
functions or to edit existing functions according to a user’s pur-
pose in a modular, reliable, and predictable way. This is possi-
ble because biological functions are inherently expressed 
through proteins and RNAs that are primarily encoded in DNA 
sequences. In addition, biological regulatory elements such as 
logic gates, feedback systems, and oscillators can be defined 
(Khalil and Collins, 2010). Thus, synthetic biology has great 
potential to deliver important new applications and improve 
existing industrial processes across many sectors including 
energy, pharmaceuticals, and materials (Martin et al., 2009; 
Medema et al., 2011; 2012). Here, we review the emerging 
tools currently available for synthetic biology that can be inte-
grated to design and build novel biological systems. The future 
perspective of this new, emerging field is also discussed.  
 
Genome analysis 
 
Next-generation sequencing 
DNA sequencing, which has been widely used over 30 years, 
has made great advances in molecular biology, genetics, diag-
nosis, and bioinformatics (Sanger et al., 1977). It had inevitable 
limitations, however, to generate whole-genome sequences by 
an individual researcher because of its speed, cost, and resolu- 
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tion. The advent of new technology for high-throughput DNA 
sequencing, NGS, overcame these barriers and caused a revo-
lution in genome science.  

Currently, three representative sequencers with different plat-
form technologies are commercially available. The first com-
mercial NGS platform was the Roche 454 System based on 
‘pyrosequencing’. Instead of sequencing in multiple tubes or 
microplate wells, the DNA library is amplified by emulsion po-
lymerase chain reaction (PCR) on the surfaces of hundreds of 
thousands of beads (Dressman et al., 2003; Margulies et al., 
2005). The current GS FLX+ system can sequence about 500 
Mb of raw sequence in 23 h with a consensus accuracy of 
99.99% and an average read length of 1,000 bp. Compared 
with other sequencing platforms, the Roche 454 system has an 
advantage in mapping repetitive regions because of its longer 
read length; but it has the disadvantage of an increasing error 
rate when sequencing a homopolymer: a row of repeats of the 
same short sequence (Rothberg and Leamon, 2008). The sec-
ond commercial platform, the Illumina Genome Analyzer, is 
based on sequencing by synthesis and emerged in 2006. Dif-
ferent from the method using micro-beads mentioned above, 
the adaptor-linked DNA library binds to complementary adap-
tors immobilized in a flow cell and forms clusters via bridge 
amplification (Adessi et al., 2000). The clustered library pro-
duces a signal by incorporating four differentially labeled fluo-
rescent dNTPs, and the sequencing progresses by repeating 
the process. The HiSeq 2,500 system currently produces a 
maximum read length of two 100 bp paired-end reads in high-
output mode, which results in about 600 Gb of output within 11 
days. The MiSeq system, a bench-top sequencer, produces a 
read length of two 250 bp paired-end reads and a maximum of 
8.5 Gb of data per run. The third commercial system, the Se-
quencing by Oligonucleotide Ligation and Detection (SOLiD) 
sequencer using the Polonator technology, was commercially 
released in 2007 (Shendure et al., 2005). The open-source 
sequencer uses emulsion PCR, to immobilize the DNA library 
onto a solid support, and cyclic sequencing-by-ligation chemis-
try. A recent version, the 5,500 Series Genetic Analysis Sys-
tems, can sequence a maximum of 20 Gb of DNA per day. 
Personal sequencers, such as the MiSeq and Ion torrent™, of 
small size are efficient for relatively fast analyses. The differ-
ence of the Ion torrent™ system compared with other sequenc-
ing techniques is the use of a semiconductor-based sequenc-
ing technique rather than signal detection methods, such as the 
use of fluorescent dyes. In this system, when a dNTP is incor-
porated into DNA, it produces a pyrophosphate and a proton. 
The DNA library is immobilized in microwells, and when a 
dNTP is incorporated into the DNA by DNA polymerase, the 
change in pH caused by the protons can be detected as a volt-
age change. Sequencing data can be obtained rapidly and at 
low cost, because the Ion torrent™ system does not use ex-
pensive dNTPs labeled with fluorescent dyes and an optical 
detection device. The Ion PGM sequencer produces a maxi-
mum read length of 400 bp and generates between 1 and 2 Gb 
of data within several hours. The maximum read length and the 
total output of each platform is continuously increasing.  

Unlike the NGS platforms that depend on DNA-library ampli-
fication, third-generation sequencing platforms determine DNA 
sequences directly from a single DNA molecule (Pareek et al., 
2011; Schadt et al., 2010). This single-molecule sequencing 
can overcome sequencing errors and biases, caused by the 
favor of certain sequences during the amplification step, that 
potentially distort the abundances of various DNA fragments in 
the sample. These novel methods rely on sequencing by syn-

thesis, sequencing by degradation, or sequencing by direct 
physical inspection of the DNA molecule via a specially engi-
neered DNA polymerase, various artificial nanopores, or ad-
vanced microscopy techniques (Clarke et al., 2009; Zhang et 
al., 2011). Although most third-generation sequencing platforms 
are currently still in development, they will offer advantages 
over current technologies, such as higher throughput, faster 
turnaround time, longer read lengths, higher accuracy, smaller 
amounts of starting material, and lower sequencing costs 
(Schadt et al., 2010). 
 
Genome sequencing  
With its high accuracy, fast speed, and low cost, NGS is widely 
used to determine the genome sequences of various organ-
isms and the variations between genome sequences (Pushkarev 
et al., 2009; Wheeler et al., 2008). As of June 2012, a total of 
3920 bacterial genomes and 854 eukaryotic genomes have 
been completely sequenced (Pagani et al., 2012). In addition to 
routine de novo genome sequencing, NGS can be also used 
for the diagnosis and monitoring of pathogens including viruses, 
bacteria, fungi, and parasites. NGS can produce full information 
about the genotype of a pathogen within several hours and 
help to formulate a drug for an unknown pathogen as soon as 
possible for public health purposes. NGS could replace compli-
cated and time-consuming techniques used in routine clinical 
microbiology practices with a simple, more efficient workflow 
(Didelot et al., 2012; Shendure and Lieberman Aiden, 2012; 
Soon et al., 2013).  

The obvious applications of NGS are de novo genome se-
quencing, whole-genome resequencing, and targeted rese-
quencing. The first application of NGS to genome sequencing 
was to elucidate Acinetobacter baumannii pathogenesis using 
454 sequencing technology (Smith et al., 2007). Despite the 
sequencing power of NGS, the short reads obtained from NGS 
draw a setback in terms of genome assembly and mapping 
applications (Wold and Myers, 2008). For example, repetitive 
sequences are widely distributed across the entire human ge-
nome, therefore the short reads are placed equally at multiple 
chromosomal locations. Efforts in bioinformatics have been 
made to overcome the limitation; but many challenges still exist 
to either efficiently assemble short reads de novo or else align 
them to a reference genome. The currently available bioinfor-
matics tools for short-read alignment and de novo and refer-
ence-guided assembly have been reported elsewhere (Martin 
and Wang, 2011; Zhang et al., 2011).  

Nevertheless, NGS allows for very deep genomic coverage. 
Whole-genome resequencing is therefore being widely per-
formed for the correct identification of SNPs and structural 
variations such as insertions, deletions, copy number variations, 
and rearrangements. For example, a large number of human 
genomic variations have been determined by multi-institute 
consortia projects (1000 Genomes Project Consortium et al., 
2010; Ball et al., 2012; Encode Project Consortitum, 2012; 
Hugo Pan-Asian SNP Consortium et al., 2009). To date, more 
than 30 million SNPs have been discovered by human genome 
sequencing projects. Copy number variation has also been 
shown to be associated with various diseases including glomeru-
lone-phritis (Aitman et al., 2006) and Crohn’s disease (McCarroll 
et al., 2008). Resequencing can also be applied to sequence an 
entire bacterial genome to identify acquired mutations. For in-
stance, accumulated mutations in microbes adaptively evolved 
in the laboratory have been detected by comparing polymor-
phisms between ancestral and evolved genomes (Araya et al., 
2010; Atsumi et al., 2010; Charusanti et al., 2010; Conrad et al., 
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2009; Kishimoto et al., 2010).  
Resequencing is not about analyzing the whole genome but 

instead sequencing subsets of genes or specific parts of ge-
nome. Targeted resequencing analyzes the interesting parts 
and concentrates studies on specific targets. Comparing the 
specific sites between different samples may assist the discov-
ery of novel biological mechanisms (Qi et al., 2013a; Ram et al., 
2011). Exome sequencing is one resequencing method that 
identifies protein-coding regions. The method is valuable for the 
diagnosis of genetic diseases, such as human pancreatic can-
cer (Wang et al., 2012b) and Mendelian disorders (Ku et al., 
2011), caused by mutations in coding regions.  
 
Transcriptome sequencing  
The physiological properties of cells are programmed by a set 
of RNA molecules defined as the transcriptome. This means 
that distinct sets of genes are simultaneously activated or re-
pressed by diverse regulators in accordance with changing 
environments. Thus, it is important to measure the levels of 
RNA transcripts to elucidate physiologically relevant biological 
processes. To readily analyze genome-wide cellular transcrip-
tion, microarrays based on hybridization have been widely 
available (Schena et al., 1995; Selinger et al., 2000). However, 
the array-based approach is limited by a high rate of noise due 
to cross-hybridization, the dynamic range of detection due to 
signal saturation, and the inability to detect transcripts with low 
copy numbers per cell. In addition, array-based approaches 
require extensive normalization based on complicated statisti-
cal calculations to compare expression data from different ex-
periments (Pinto et al., 2011). 

NGS addressed the limitations of the array-based approa-
ches with the introduction of RNA-seq, which was first invented 
in both yeast and mammalian cells (Cloonan et al., 2008; 
Mortazavi et al., 2008; Nagalakshmi et al., 2008; Wilhelm et al., 
2008). Unlike the array-based approaches, which depend on 
hybridization, RNA-seq allows the unambiguous mapping of 
transcripts to unique regions of the genome with single-base 
resolution. Hence, there is lower background noise (Soon et al., 
2013). In addition to the accurate quantification of the transcrip-
tome of known genes, RNA-seq allows the determination of 
correct gene annotation, expressed single nucleotide polymor-
phisms (SNPs), novel genes, and RNAs with high levels of 
reproducibility. Moreover, the strand-specific RNA sequencing 
principle is based on analyzing primary mRNA transcripts. 
Therefore, it allows the identification of more reliable and more 
accurate genome architectures (Cho et al., 2009; Kim et al., 
2012b; Levin et al., 2010; Perkins et al., 2009; Qiu et al., 2010; 
Seo et al., 2012; Sharma et al., 2010).  

Even without a reference genome, de novo transcriptome 
assembly can be done by using short reads from RNA-seq. 
This method has facilitated the reconstruction of the entire 
transcriptome (Grabherr et al., 2011; Martin and Wang, 2011). 
With the reconstructed transcriptome, BLAST or other gene 
prediction tools are used to identify functional annotation. Many 
assemblers, such as Multiple-k (Surget-Groba and Montoya-
Burgos, 2010), Rnnotator (Martin et al., 2010), Trans-ABySS 
(Robertson et al., 2010), Oases (Schulz et al., 2012), and Trin-
ity (Grabherr et al., 2011), have been developed. An example 
of de novo transcriptome assembly is the identification of novel 
genes related to useful biosynthetic pathways. Capsaicinoid 
from chili pepper, for example, is a practical compound that has 
various medical applications. Because the capsaicinoid biosyn-
thetic pathway was not fully identified, de novo assembly was 
performed, and three novel structural genes in the biosynthetic 

pathway were discovered (Liu et al., 2013). Similarly, insecti-
cide-resistance genes were identified in species of insect pests 
(Hsu et al., 2012). De novo transcriptome assembly can be 
more beneficial than genome sequencing alone, because RNA-
seq not only reconstructs entire transcriptome, but it also 
measures the expression level of the target genes without ge-
nome sequences. Moreover, de novo transcriptome assembly 
with RNA-seq has the advantage of detecting additional tran-
scription information, like alternative splicing sites in eukaryotes.  
 
Interactome sequencing  
To design and construct new synthetic circuits or pathways 
within a producer cell, synthetic biology demands the availabil-
ity of standardized regulatory parts including promoters, ribo-
some-binding sites, terminators, DNA-binding proteins, and 
corresponding protein-binding sites (Cheng and Lu, 2012; 
Khalil and Collins, 2010; Nandagopal and Elowitz, 2011; Wang 
et al., 2013a). In this regard, NGS can be used to obtain the 
library of synthetic biology parts, enabling the development of 
novel devices and networks. The methods to identify the inter-
actions between DNA and proteins (e.g., transcription factors) 
are chromatin immunoprecipitation (ChIP)-based techniques 
such as ChIP-seq and ChIP-exo (Johnson et al., 2007; Rhee 
and Pugh, 2011; Robertson et al., 2007). For ChIP-seq, DNA-
protein complexes are specifically isolated by an antibody 
against the target protein. Purified DNA obtained from the im-
munoprecipitated DNA-protein complexes is ligated with se-
quencing adaptors, amplified by PCR, and massively sequen-
ced. Unlike electrophoretic mobility shift assay, the sequencing 
results verify in vivo interactions between proteins and their 
corresponding binding sites. Although microarrays have been 
frequently used to map DNA-protein or RNA-protein interac-
tions at the genome scale, NGS technologies are quickly re-
placing the use of microarrays. Compared with previous mi-
croarray-based results, ChIP-seq has superior resolution, re-
quires less input DNA, produces less background noises, and 
has a better detection limit (Furey, 2012; Park, 2009; Valouev 
et al., 2008). In addition, NGS can be used to determine the 
interaction between RNA-binding proteins and RNA via a tech-
nique called ultraviolet (UV) crosslinking and immunoprecipita-
tion (CLIP). After the irradiation of cells with UV 254 nm (HITS-
CLIP) (Yeo et al., 2009) or UV 365 nm (PAR-CLIP) (Hafner et 
al., 2010), the cells are lysed, and RNA-protein complexes are 
pulled down using antibody-immobilized beads. Like ChIP-seq, 
protein-binding sites on RNAs are collected from the sequenc-
ing library. 

ChIP-seq determines the targets of transcription factors in 
bacteria and eukaryotes. For instance, GlxR is one of the key 
transcriptional regulators in Corynebacterium glutamicum, an 
amino acid-producing bacterium. The investigation of C. glu-
tamicum’s regulatory network using ChIP-seq revealed 21 
novel binding sites and concluded that GlxR is responsible for 
carbon-source metabolism and energy conversion (Jungwirth 
et al., 2013). Taken together, this approach will greatly expand 
our understanding of genome-wide associations between pro-
teins and DNA. It will also grow the library of synthetic biology 
parts, thus enhancing our ability to model cellular behavior.  
 
Genome design  
 
Minimal genome as a programmable biological chassis  
Approximately 20% of the 4,000 genes found in E. coli have not 
been functionally annotated (Keseler et al., 2013). In addition, 
numerous other cellular components with unknown genes are 
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the most significant barriers to rational genome design. The 
genome-reduction approach provides a chassis for the con-
struction of synthetic genomes with improved metabolic effi-
ciency by minimizing redundant genes and regulatory circuits. 
Four criteria can guide the design of a useful biological chassis: 
growth rate, fermentation ability, genetic manipulation, and addi- 
tional gene deletion. For example, the deletion of large blocks 
of nonessential genes that are not needed for the metabolic 
pathways of interest can reduce the production of unwanted by-
products, increase the genome stability, and simplify the me-
tabolism without physiological compromise (Forster and Church, 
2006; Giga-Hama et al., 2007; Glass et al., 2006; Morimoto et 
al., 2008; Posfai et al., 2006; Yu et al., 2002).  

A method for creating random and repeated genomic dele-
tions was developed to create deletions in Escherichia coli 
MG1655 using a Tn5 derivative: essentially, a rearranged com-
posite transposon that promotes the use of the internal trans-
poson ends (Goryshin et al., 2003). The method was used to 
minimize the E. coli MG1655 genome down to an average of 
200 kb (averaging 10 kb per deletion) through 20 cycles of 
random integration and deletion steps. The deletion locations 
were confirmed by microarray-hybridization experiments. Lee et 
al. reengineered the E. coli MDS42 chromosome to be 14.3% 
smaller than that of its parental E. coli strain, MG1655 (Lee et 
al., 2009). The genome reduction increased the production of L-
threonine in MDS42 by overexpressing a feedback-resistant 
threonine operon (thrA*BC), deleting the genes that encode 

threonine dehydrogenase (tdh) and threonine transporters (tdcC 
and sstT), and introducing a mutant threonine exporter (rhtA23) 
(Lee et al., 2009). The resulting strain, MDS-205, showed an 
~83% increase in L-threonine production compared with a wild-
type E. coli strain. Westers et al. (2003) deleted 0.53 Mb (7.7% 
of the genome) from Bacillus subtilis, whose wild-type genome 
size is 4.2 Mb. Another B. subtilis strain, MGB874, was created 
by step-by-step deletions of 28 regions (20.7% of the genome) 
in which single deletions do not affect cell growth (Morimoto et 
al., 2008). When plasmids encoding extracellular cellulase and 
protease enzymes were transformed into MGB874, their produc-
tivities were enhanced up to 1.7- and 2.5-fold, respectively, 
relative to the wild-type strain. Genome reduction in Saccharo-
myces cerevisiae was also attempted to create a mutant ge-
nome in which 531.5 kb of the wild-type genome was deleted 
(Murakami et al., 2007). This mutant increased its ethanol and 
glycerol production by 1.8- and 2-fold, respectively; and its re-
sistance to external stresses such as temperature, pH, salt, and 
changes of growth media was equivalent to that of the wild type. 
The deletion of a large genomic region in the fission yeast Sac-
charomyces pombe to find an efficient mutant for heterologous 
protein production was also achieved using homologous re-
combination between the chromosome and a fragment of linear 
DNA (Giga-Hama et al., 2007; Hirashima et al., 2006).  

The genome-reduction approach has been focused on the 
deletion of unnecessary genes. Because the goal of synthetic 
biology is to implement in a cell artificial regulatory circuits that 

Fig. 1. Overall scheme and related

synthetic biology tools for building new

biological systems. 
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can be predictable, measurable, and controllable, the vast 
number of endogenous regulatory interactions should reduced 
and replaced by well-defined orthogonal equivalents.  
 
Genome synthesis and assembly 
 

The first synthetic genome was that of poliovirus (Cello et al., 
2002). Subsets of the full-length viral genome were first synthe-
sized and cloned separately into plasmids that were subse-
quently used to transform living cells. Recently, Gibson et al. 
(2010) achieved whole-genome design, synthesis, and assem-

bly. They synthesized the 1.08 Mb Mycoplasma mycoides 
JCVI-syn1.0 genome starting from digitized genome-sequence 
information. Furthermore, they transplanted the chemically 
synthesized genome into a Mycoplasma capricolum recipient 
cell to make variants of M. mycoides that are controlled only by 
the synthetic chromosome. Thus, genome engineering is being 
greatly advanced by the improvement of DNA synthesis tech-
niques in rapid time at an affordable price. The synthesis ca-
pacity has broadened from producing small primers to de novo 
synthesis of genes with any length and any complexity. Gene-
scale synthesis is also becoming highly commercialized. 

Fig. 2. Genome assembly meth-

ods. (A) Standard assembly with

restriction enzymes, (B) In-fusion

assembly, (C) Sequence and li-

gase independent cloning (SLIC),

(D) Gibson assembly, and (E) Gol-

den Gate assembly. 
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Fig. 3. Schematic diagram of genome editing methods. (A) Zinc-finger nuclease (ZFNs), which is recognized and bound with three nucleotides 

of the genome; (B) Transcription activator-like effector nuclease (TALENs), in which each amino acid in the DNA-binding domain recognizes 

one nucleotide; and (C) Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system, which uses guide RNAs for 

recognizing target DNA. 
 
 
 
It is now inexpensive: near $0.29 per bp. The chemical synthe-
sis of up to 4.5 Mb in a month is now feasible. The high-quality 
error-correction methods save time and labor at a reasonable 
price, frequently requiring less time and labor than conventional 
molecular cloning and sequencing (Richmond et al., 2004; Tian 
et al., 2004).  

Although the accuracy of the traditional DNA synthesis 
method is very high, the quantity of each reaction batch limits 
the synthesis of whole genomes. To overcome this problem, 
attempts have been made to synthesize massive numbers of 
oligonucleotides on solid supports, like beads and microarrays, 
in a high-throughput fashion (Tian et al., 2004). In 2010, the 
Church group introduced a new technology using a combinato-
rial method of microarray and Roche 454 to synthesize a target 
DNA library. First, microarray-derived oligonucleotide pools were 
amplified and sequenced using Roche 454. After the sequenc-
ing, the correctly synthesized oligonucleotide was extracted, 
and the DNA was re-amplified. Compared with the microarray 
library, the finalized library-error rate was reduced by 500 fold 
(Matzas et al., 2010). Many studies on using microarray-to-
gene synthesis and expanding the length of the oligonucleotide 
have been attempted. The microarray-derived oligonucleotides 
were selectively amplified by specific short primers. Using the 
amplified oligonucleotide pool, the target genes were assem-
bled, producing up to a total of 35 kb (Kosuri et al., 2010). In 
addition, a 0.5 to 1 kb oligonucleotide was individually synthe-
sized on subarrays and endonucleased by the mismatch-
specific endonuclease. This approach reduced the error rate to 
0.19 errors per kb and assembled the target gene (Quan et al., 
2011). 

Gene assembly methods have been used to build targeted 

genetic circuits. For example, the BioBricks library contains 
various promoters, ribosome-binding sites (RBSs), coding se-
quences, and transcriptional terminators (Canton et al., 2008). 
The standard assembly, as shown in Fig. 2A, uses restriction 
enzymes. Using restriction enzyme and ligase, the target genes 
and the destination vector are given the same two sticky ends 
and ligated to form a new plasmid. However, this method re-
quires different numbers of restriction-enzyme sites, depending 
on the number of target genes. After the ligation, a scar se-
quence may remain because of the effects of the restriction 
sites. The digested products also need time-consuming purifi-
cation steps. An in-fusion BioBrick assembly (Fig. 2B) was 
newly developed to avoid the purification steps and the scar 
sequence (Sleight et al., 2010). The sequence and ligase-
independent cloning (Fig. 2C) method was developed to avoid 
the use of restriction and ligation enzymes (Li and Elledge, 
2007). Using PCR, the target gene with 25-bp sequence ho-
mologous to the linearized destination vector is amplified. With-
out dNTPs, the 3′ exonuclease activity of T4 DNA polymerase 
makes 5′ overhang. After the exonuclease activity, the anneal-
ing and adding of dNTPs trigger the homologous recombination 
of the target gene to form a new vector. Gibson assembly (Fig. 
2D) uses a linearized destination vector and PCR products and 
the 5′ exonuclease activity of T5 exonuclease (Gibson et al., 
2009). Golden Gate assembly (Fig. 2E), another method of 
DNA assembly (Engler et al., 2008) that uses type IIS endonu-
clease, has different recognition and cleavage sites that pro-
duce insert-DNA and a vector. This simple procedure helps 
multiple target assemblies to be worked simultaneously. The 
circular polymerase-extension cloning method, which uses dou-
ble-stranded DNA and a linearized destination vector, was de-
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veloped to assemble more efficiently (Quan and Tian, 2009; 
Zhang et al., 2012). The uracil excision-based cloning method 
solved the difficulty in controlling the exonuclease activity 
(Bitinaite et al., 2007) and the DNA-fragment assembly by in-
troducing nicking endonuclease (Wang et al., 2013b). 
 
Genome editing tools 
 
An in-depth understanding of the complex genetic functions of 
complete genome sequences requires extensive genetic, bio-
chemical, cytological, and physiological analyses. Likewise, the 
design of new biological systems demands the precise manipu-
lation of genome sequences. In this context, genome editing is 
a powerful technology that introduces predetermined sequence 
changes to specific genomic loci (Perez-Pinera et al., 2012). 
This has been facilitated by the development of engineered 
nucleases with versatile and programmable DNA-binding do-
mains, such as zinc-finger proteins and transcription activator-
like effectors that are fused to the catalytic domain of a restric-
tion endonuclease (Esvelt and Wang, 2013; Perez-Pinera et al., 
2012). These artificially engineered nucleases are used to cre-
ate specific double-stranded breaks (DSBs) at desired locations 
in the genome, which are subsequently repaired by endoge-
nous homology-directed repair (HDR) pathways or nonhomolo-
gous end-joining (NHEJ) (Brugmans et al., 2007; Kanaar et al., 
1998; Sung and Klein, 2006). HDR is an error-free DSB repair 
system that uses homologous DNA as a template. NHEJ often 
induces small insertions and deletions at breakpoint junctions, 
because it uses non-homologous template DNA (Gaj et al., 
2012). Currently, two families of engineered nucleases are 
commercially available: ZFN and TALENs. 
 
Zinc finger nucleases  
ZFNs are chimeric endonucleases generated by the fusion of 
the nonspecific cleavage domain of the type IIS FokI restriction 
endonuclease with custom-designed Cys2-His2-zinc-finger pro-
teins (Kim and Chandrasegaran, 1994). ZFNs have been used 
as a powerful genome-editing tools to generate targeted muta-
genesis (Bibikova et al., 2002; Maeder et al., 2008; Urnov et al., 
2005) and chromosomal rearrangements (Brunet et al., 2009; 
Lee et al., 2010) in numerous species including Caenorhabditis 
elegans (Morton et al., 2006), Drosophila melanogaster (Bibikova 
et al., 2002), silkworms (Takasu et al., 2010), monarch butter-
flies (Merlin et al., 2012), zebrafish (Doyon et al., 2008; Meng et 
al., 2008), sea urchins (Ochiai et al., 2010), Arabidopsis tha-
liana (Osakabe et al., 2010; Zhang et al., 2010), tobacco (Cai et 
al., 2009; Maeder et al., 2008; Townsend et al., 2009), corn 
(Shukla et al., 2009), mice (Carbery et al., 2010; Meyer et al., 
2010), rats (Geurts et al., 2009), and humans (Hockemeyer et 
al., 2009; Holt et al., 2010; Zou et al., 2009).  

A single-stranded breaks system, a modification of the tools 
that use ZFNs to induce DSBs, was also developed by fusing 
DNA-nicking enzymes (nickases) with zinc-finger proteins. It 
allowed accurate, site-specific genome modifications at only the 
on-target site (Brunet et al., 2009; Kim et al., 2012a). In addition, 
a ZFNickase that stimulates HDR but not NHEJ was developed 
by the mutation of a critical residue for FokI cleavage activity in 
one monomer of the ZFN heterodimer. It allowed the ZFNs to 
heterodimerize on DNA, but it restricted the cleavage to a single 
DNA strand. Consequently, ZFNickase induced gene addition 
at an endogenous CCR5 locus without the significant increase 
caused by the error-prone NHEJ repair pathway (Wang et al., 
2012a).  
 

Transcription activator-like effector nucleases  
Transcription activator-like (TAL) effectors expressed by bacte-
rial plant pathogens of the genus Xanthomona Xanthomonas 
consist of the translocation domain at the N-terminus, the re-
peated domain for DNA binding, nuclear localization, and the 
transcriptional activation domain at the C-terminus. The TAL 
effector repeats are highly conserved domains consisting of 33 
to 35 amino acids, except for two internal positions known as 
repeat variable di-residues that display specificity to a target 
gene (Boch et al., 2009; Moscou and Bogdanove, 2009). By 
means of this specific protein, a TAL effector was engineered to 
produce a TALEN (Bogdanove and Voytas, 2011; Carlson et al., 
2012) that associates with the FokI nuclease, which has an N-
terminal DNA-binding domain and a non-specific DNA cleavage 
domain at the C-terminus (Wah et al., 1997). To function as a 
dimer, the FokI domain requires two constructs of unique DNA-
binding domains with proper orientation and spacing in the 
target genome. Therefore, TALENs can be used to generate 
site-specific DSBs that can be repaired by joining, either by 
NHEJ or by homology-directed repair without donor DNAs, 
resulting in gene insertion or correction as well as the disruption 
of the gene of interest in various species such as yeast (Li et al., 
2011), Xenopus embryos (Lei et al., 2012), plants (Cermak et 
al., 2011), nematodes (Wood et al., 2011), zebrafish (Huang et 
al., 2011; Sander et al., 2011), rats (Tesson et al., 2011), and 
human somatic (Cermak et al., 2011; Matsumura et al., 2010; 
Miller et al., 2011) and pluripotent stem cells (Hockemeyer et al., 
2011).  

The TALENs are broadly applied to custom-designed ge-
nome-editing tools in a high-throughput manner (Miller et al., 
2011; Reyon et al., 2012). Reyon et al. designed the fast liga-
tion-based automatable solid-phase high-throughput (FLASH) 
system, which is fast and economical for the large-scale as-
sembly of TALENs (Reyon et al., 2012). Recently, Bedell VM et 
al. provided an advanced TALENs approach for targeted ze-
brafish genome editing, which was a bottleneck in the genome 
modification field (Bedell et al., 2012b).  
 
RNA-guided CRISPR nucleases  
Clustered regularly interspaced short palindromic repeats 
(CRISPRs) are short, repetitive genomic sequences that func-
tion as an immune system in 90% of reported archaea and 
40% of known bacteria (Jansen et al., 2002; Makarova et al., 
2011; Sorek et al., 2008). The CRISPR-associated system 
cleaves viral and plasmid DNAs into short fragments, which are 
integrated into the host chromosome at one end of the re-
peated region of the CRISPR locus. When the foreign DNA is 
transferred into the host cell, the records of prior integration 
events are transcribed and used to produce a library of short 
CRISPR-derived RNAs (crRNAs) by a CRISPR-associated or 
RNase III family nuclease. Each crRNA is complementary to a 
foreign target DNA and mediates the sequence-specific cleav-
age of the foreign DNA by the endonuclease function of Cas 
proteins (Makarova et al., 2011; Sorek et al., 2008; Wiedenheft 
et al., 2012). For example, the Type II CRISPR system from 
Streptococcus pyogenes consists of a single gene encoding the 
Cas9 protein, a mature crRNA, and a partially complementary 
trans-acting RNA (tracrRNA) (Jinek et al., 2012). In this system, 
a single CRISPR-associated protein (Cas9) in complex with the 
crRNA and the tracrRNA catalyzes the cleavage of comple-
mentary sequences, called proto-spacers, present within the 
target DNA. Upon recognizing the 20-nucleotide sequence, 
guided by the crRNA, Cas9 generates blunt DSBs at the site 3 
bp upstream of the conserved proto-spacer-adjacent motif 
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(PAM) (Jinek et al., 2012; Mali et al., 2013). Subsequently, the 
DSBs stimulate NHEJ repair in genomic DNA. Although the 
PAMs are short DNA sequences (NGG, NGGNG, NNAGAAW, 
and NAAR), they are necessary, in addition to at least 12 bp of 
perfect homology, for CRISPR endonuclease activity (Cong et 
al., 2013; Deltcheva et al., 2011; Deveau et al., 2008; Esvelt 
and Wang, 2013; Horvath et al., 2008; Jinek et al., 2012; Mali et 
al., 2013; van der Ploeg, 2009). The requirement of tracrRNA, 
which plays an important role in the maturation of crRNA (Del-
tcheva et al., 2011; Horvath et al., 2008), can be engineered to 
a designed, hairpin-structured single-guide RNA (sgRNA) that 
mimics the tracrRNA-crRNA complex (Jinek et al., 2012). Thus, 
the engineered CRISPR system requires the Cas9 protein and 
the sgRNA, and therefore represents a facile strategy for tar-
geted genome editing. Recently, it has been demonstrated that 
the engineered CRISPR system can be applied to genome 
editing in humans (Cho et al., 2013; Cong et al., 2013; Jinek et 
al., 2013; Mali et al., 2013), zebrafish embryos (Hwang et al., 
2013), S. cerevisiae (Dicarlo et al., 2013), and bacterial cells 
(Jiang et al., 2013; Jinek et al., 2012), as well as to the RNA-
guided programming of gene expression (Hale et al., 2012; Qi 
et al., 2012; 2013b).  
 
CONCLUSION 

 

The ultimate goal of synthetic biology is to build novel biological 
systems that have new functions or to engineer existing biologi-
cal systems to have better efficiency. For this, it is useful to 
consider the four core technical areas of synthetic biology: in-
dexing biological parts, DNA synthesis and assembly, sequenc-
ing, and genome editing. Indeed, NGS platforms have ad-
dressed the technical barriers to securing enormous numbers 
of biological parts, such as promoters, RBSs, terminators, and 
regulatory protein-binding sites, as well as new genes including 
enzymes and regulatory proteins. Because the functions of 
biological parts are host-specific in many cases, some may not 
function as expected in their new context. Thus, host-specific 
libraries of biological parts, such as the strength of RBSs or 
regulatory sequences, will be useful to build new biological 
systems. In addition, the desired biological parts are often not 
single genes but are instead complete operons, such as a bio-
synthetic pathway consisting of several genes. Furthermore, 
the candidate parts need to be combined into transcriptional 
units with a well-designed regulatory circuitry in the context of 
genome-scale metabolic and regulatory networks. Manually 
curated, genome-scale biochemical reconstructions of around 
40 different bacteria and the community-driven, global recon-
struction of the human metabolism will be useful to predict the 
suitability of the transcriptional unit (Feist et al., 2009; Thiele et 
al., 2013).  

Although the decrease in the cost of DNA synthesis has 
dramatically accelerated the construction of thousands of vari-
ants of DNA parts, codon optimization is also important for the 
efficient heterologous expression of the desired biological parts. 
For this, several computational algorithms are currently avail-
able. In addition, the fast and efficient formation of new gene 
clusters requires the simultaneous assembly of biological parts 
in a robust and flexible manner. New genome editing methods 
are also bringing down the number of errors in the genomes 
synthesized with the current sequencing capabilities. In addition 
to these experimental efforts, it is also crucial to develop com-
putational algorithms for the de novo design of metabolic path-
ways with regulatory circuitry. With the many challenges to the 
understanding of natural biological systems, the rapid progress 

of emerging tools for synthetic biology has begun to provide 
genomes for applications in the areas of energy, health care, 
biochemicals, and the environment.  
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