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Abstract

This paper compares three confidence intervals for the difference between two means when the distributions are non-normal
and their variances are unknown. The confidence intervals considered are Welch–Satterthwaite confidence interval, the adaptive
interval that incorporates a preliminary test (pre-test) of symmetry for the underlying distributions, and the adaptive interval that
incorporates the Shapiro–Wilk test for normality as a pre-test. The adaptive confidence intervals use the Welch–Satterthwaite interval
if the pre-test fails to reject symmetry (or normality) for both distributions; otherwise, apply the Welch–Satterthwaite confidence
interval to the log-transformed data, then transform the interval back. Our study shows that the adaptive interval with pre-test of
symmetry has best coverage among the three intervals considered. Simulation studies show that the adaptive interval with pre-test
of symmetry performs as well as the Welch–Satterthwaite interval for symmetric distributions. However, for skewed distributions,
the adaptive interval with pre-test of symmetry performs better than the Welch–Satterthwaite interval.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Behrens–Fisher problem; Coverage probability; Expected length; Preliminary test; Shapiro–Wilk test; Welch–Satterthwaite confidence
interval

1. Introduction

The problem of calculating confidence intervals for the difference between the means of two independent normal
distributions is covered in numerous elementary statistics text books. The common way is to use the t distribution
with pooled sample variances when the population variances are known to be equal; otherwise, use the non-pooled
Welch–Satterthwaite confidence interval (Welch, 1938; Satterthwaite, 1946) referred as WS interval hereafter. However,
in practice, the variances of the populations are usually unknown, and one tends to resolve the uncertainty by using
a preliminary test (pre-test) on equality of variances. If the pre-test concludes that the variances are equal, one then
pools the sample variances to construct an interval; otherwise, uses the non-pooled WS interval. This may sound like
an excellent idea, but recent studies showed that this adaptive procedure is not as good as it sounds (see, e.g., Moser
et al., 1989, 1992; Bradley, 1978, 1980a,b). The current practice for the case of normal distributions is that one pools
the sample variances to construct an interval when the sample sizes are equal; otherwise, uses the non-pooled WS
interval.
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Besides the pooled-variance t confidence interval and the WS non-pooled intervals, several other studies also pro-
posed different forms of confidence intervals for the difference between two normal means. For example, Scheffe
(1943) proposed an interval with coverage always equal to the nominal level, but he himself later pointed out that the
interval is not practical (Scheffe, 1970). Banerjee (1961) proposed another type of t-confidence interval, using two
critical values from t distributions. His interval always has coverage equal to or higher than the nominal level. The
high coverage probability comes with a price that the interval is always wider than the WS interval. Cochran (1964)
proposed a confidence interval inverted from the hypothesis testing. Cochran’s interval has the same format as the WS
interval and the only difference is the degrees of freedom of the t. Cochran’s interval has coverage probability always
equal to or higher than the nominal level, but again with the price of being wider. Dalal (1978) proposed a confidence
interval whose coverage is always equal to the nominal level, but the interval requires to first obtain a constant, t� in the
paper, that involves solving an equation with the product of two cdfs of t distributions. If the sample sizes are not equal,
this constant needs to be found through numerical method. Sprott and Farewell (1993) proposed to provide several
confidence intervals based on the plausible range of the variances ratio.

The duality between hypothesis testing and the corresponding confidence interval construction had been well doc-
umented. For two independent normal distributions, the hypothesis testing on equality of means is the well-known
Behrens–Fisher problem. In reality, however, samples may come from non-normal distributions as well as unequal
standard deviations, like the distribution of the income data. When both normality and equal variances assumptions are
violated, some modifications of the t-test statistics are proposed. For example, instead of using the sample means and
variances in the t-test statistic, one can use the symmetrically trimmed sample means and variances (Yuen, 1974; Yuen
and Dixon, 1973), the modified maximum likelihood estimators based on symmetrically censored samples (Tiku, 1980),
or the asymmetrically trimmed means and variances (Reed and Stark, 1996). Cressie and Whitford (1986) showed that
one need only be concerned about the skewness effect, and they proposed a modified t-test to eliminate the bias of
skewness. Reed and Stark (2004) did a simulation study on those modified t-tests. They found that when variances are
actually equal, the pooled t-test performs well regardless of the underlying distributions. However, when the variance
ratio is 1.5, the non-symmetric trimmed procedure performs the best. Gans (1981) also studied the hypothesis testing
on equality of means when both normality and equal variances assumptions may be violated. The paper considered
normal, uniform and exponential distributions. The three tests studied are the pooled t-test, WS t-test, and the adaptive
procedure using the F-test on equality of variances as a pre-test. The conclusion is to use the non-adaptive WS t-test.
Stonehouse and Forrester (1998) compared the pooled t-test, WS t-test and the non-parametric Mann–Whitney test.
They found that contrary to its popular reputation, the Mann–Whitney U-test showed a dramatic lack of robustness and
it is not a proper non-parametric analogue of the t-test.

This paper studies the confidence intervals of the difference between two means when both normality and equal
variances assumptions may be violated. We consider three confidence intervals: the WS interval and two adaptive
intervals. The WS interval was originally designed for unequal variances situation; however, studies already showed
that this interval performs well when the standard deviations are equal (see, e.g., Moser et al., 1989). It motivated us to
focus on an adaptive procedure concerning the shape of underlying distributions. On the other hand, the t-test is robust
against non-normality, especially when the distributions are symmetric, and our simulation study also shows that the
WS interval performs well on symmetric distributions. It ultimately leads us to use a test of symmetry (Miao et al.,
2006) as the pre-test. If the pre-test concludes that neither distribution is symmetric, we transform the data into the
scale of logarithm, then apply the WS confidence interval to the log-transformed data, and finally adjust the interval
back to its original scale. However, if the pre-test indicates otherwise, we use the WS interval.

As normality is a common hypothesis in many practical situations, our second adaptive interval is to use the
Shapiro–Wilk test (Shapiro and Wilk, 1965), the omnibus of testing normality, as the preliminary test. If the pre-
test indicates both samples are not normally distributed, one applies the WS interval to log-transformed data, and then
adjusts the interval as in the previous case; otherwise, simply uses the WS interval.

The paper is organized as follows. Section 2 proposes the three confidence intervals considered. Section 3 pro-
vides the comparison of the coverage probabilities of those three confidence intervals for different types of underly-
ing distributions as well as different standard deviation ratios. The simulation shows that the adaptive interval with
pre-test of symmetry has coverage probability close to the nominal level for both symmetric and non-symmetric
distributions. The expected lengths of those intervals are compared in Section 4. The result shows that the adaptive
interval with pre-test of symmetry is slightly wider than the WS interval. Section 5 provides recommendations for
practice.
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2. Confidence intervals considered

Let X1, . . . , XnX
and Y1, . . . , YnY

be random samples from two distributions (not necessary normal) with means �X,
�Y and standard deviations �X and �Y , respectively. Let X̄, Ȳ , S2

X, S2
Y be the sample means and variances for X and Y,

respectively. We are interested in the 100(1 − �)% confidence interval for �X − �Y .

2.1. The non-adaptive WS confidence interval

Let t∗k be the (1 − �/2) quantile of t distribution with degrees of freedom k. When X and Y are normally distributed,
it is known that the following WS confidence interval performs well for both equal and unequal variances. The WS
interval is defined by

Iws = (X̄ − Ȳ ) ± t∗df

√
S2

X

nX

+ S2
Y

nY

, (1)

where

df = (w1 + w2)
2

w2
1/(nX − 1) + w2

2/(nY − 1)
, w1 = S2

X

nX

, w2 = S2
Y

nY

.

Although the WS interval is designed to take care of non-equal variances situation when both distributions are
normal, our simulations show that the WS confidence interval also performs well if the samples come from symmetric
distributions. However, the coverage probability for Iws interval can be much lower than its nominal level if the samples
come from skewed distributions as well as unequal variances.

2.2. Pre-test of symmetry used in the adaptive interval

As WS interval performs well on symmetric distributions, we were motivated to focus on symmetry of the underlying
distributions. To partially resolve the uncertainty whether the underlying distribution is symmetric or not, a pre-test
of symmetry can be performed. Miao et al. (2006) has recently proposed a test for symmetry of distributions. Let
X1, . . . , Xn be a random sample from some distribution. The pre-test is

H0: the underlying distribution is symmetric
Ha: the underlying distribution is not symmetric.

The test statistic is

T = X̄ − M

J
, J =

√
�

2
· 1

n

n∑
i=1

|Xi − M|,

where X̄ and M are the sample mean and sample median. Note that the numerator of T is the difference between the
sample mean and sample median, and the denominator is a robust estimate of standard deviation. This test statistic is
asymptotically normally distributed under both the null and alternative hypotheses (see Miao et al., 2006). The test
calls to reject the null hypothesis at �′ level of significance if

|T |� z�′/2
√

0.5708√
n

,

where the constant 0.5708 is the asymptotic variance of T when the underlying distribution is normal, and z�′/2 is the
upper �′/2 percentile of a standard normal. It is shown that this test has high power for exponential distributions with
small sample sizes.
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2.3. Confidence interval when the samples are not symmetric

For skewed distributions, taking the logarithm usually makes the distribution more symmetric. If the preliminary test
concludes that both underlying distributions are not symmetric, we apply the WS interval Iws to the log-transformed
data. Then the delta method is used to adjust the interval.

First we transform the data Xi to log(Xi + cX) and Yi to log(Yi + cY ), where cX and cY are the constants to make
sure Xi + cX > 0 and Yi + cY > 0, and then we apply the WS interval to the log-transformed data. Let [Llog, Ulog] be
the WS confidence interval obtained from log(X1 + cX), . . . , log(XnX

+ cX) and log(Y1 + cY ), . . . , log(YnY
+ cY ).

The first-order Taylor expansion for log(X + cX) is

log(X + cX) = log(�X + cX) + 1

�X + cX

(X − �X) + R,

where R is the remainder. Consequently,

E[log(X + cX)] ≈ log(�X + cX), E[log(Y + cY )] ≈ log(�Y + cY )

and

E[log(X + cX)] − E[log(Y + cY )] ≈ log(�X + cX) − log(�Y + cY ).

Let CP log be the coverage probability of [Llog, Ulog] for the difference E[log(X + cX)] − E[log(Y + cY )], and CP be
the coverage of the adjusted interval for �X − �Y . We then have

CP log = P(E[log(X + cX)] − E[log(Y + cY )] ∈ [Llog, Ulog])
≈ P((log(�X + cX) − log(�Y + cY )) ∈ [Llog, Ulog])

= P

(
�X + cX

�Y + cY

∈ [eLlog , eUlog ]
)

= P(eLlog(�Y + cY )��X + cX �eUlog(�Y + cY ))

= P(eLlog(�Y + cY ) − �Y − cX ��X − �Y �eUlog(�Y + cY ) − �Y − cX)

≈ P(Ȳ (eLlog − 1) + (cY · eLlog − cX)��X − �Y

� Ȳ (eUlog − 1) + (cY · eUlog − cX))

= CP .

Hence, the proposed confidence interval for �X − �Y when both distributions are not symmetric is

Ilog = [Ȳ (eLlog − 1) + (cY · eLlog − cX), Ȳ (eUlog − 1) + (cY · eUlog − cX)]. (2)

Note that the adjusted log confidence interval has two approximation steps. The first step is the use of Taylor
expansion on the logarithm, and the second one is to use the Ȳ to approximate �Y . According to the Central Limit
Theory, Ȳ ≈ N(�Y , �2

Y /nY ). As Ȳ is used to estimate �Y , we choose the sample with smaller standard error (sY /
√

nY )
as the Y sample to obtain a better approximation.

2.4. The adaptive intervals

In our proposed adaptive procedure, a preliminary test of symmetry is conducted for both samples. If the pre-test
detects that both samples are not symmetric, we use the log-adjusted interval Ilog proposed in the previous subsection;
otherwise, directly use the WS interval Iws. Hence the adaptive confidence interval for �X − �Y incorporating the
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pre-test of symmetry is defined by

Iadp_s =
{

Ilog if the pre-test rejects symmetry for both samples,
Iws otherwise.

(3)

As normality is a rather common assumption in statistical inference, and the Iws interval was designed for normal
distributions. It motivated us to consider the adaptive confidence interval that incorporates the Shapiro–Wilk test for
normality as a pre-test. The adaptive interval with Shapiro–Wilk test is thus defined by

Iadp_sw =
{

Ilog if the pre-test rejects normality for both samples,
Iws otherwise.

(4)

3. Coverage probability

This section provides simulation studies for the coverage probabilities of the three confidence intervals proposed
in Section 2. The nominal level of the confidence interval is 95%. For adaptive confidence intervals, the level of
the preliminary test is set at 10%. Both symmetric and non-symmetric distributions are considered. For symmetric
distributions, we considered normal, 10% contaminated normal (0.9N(0, 1)+0.1N(0, 32)), double exponential, heavy-
tailed t3 as well as short-tailed uniform distributions. For non-symmetric distributions, slightly skewed chi-squared
distribution with degrees of freedom 8 (�2

8), heavily skewed lognormal and exponential distributions are considered.
Equal sample sizes with nX = nY = 20 as well as non-equal sample sizes with nX = 40, nY = 20 are considered. The
ratio of the standard deviations (�Y /�X) ranges from 0.2 to 5. The results are based on 104 simulations. As all the
coverage probabilities are higher than 0.8, the error rate for the simulated results is

√
0.8 ∗ 0.2/10 000 ≈ 0.004 or less.

Table 1 shows the simulation results for coverage probabilities when the two samples are from the same distribution
family. Clearly for symmetric distributions, both the symmetry adaptive interval Iadp_s and the non-adaptive Iws have
coverage probabilities very close to the nominal 95% for all sample sizes and all standard deviation ratios combinations
considered. This is not surprising as the Iadp_s uses WS interval for symmetric distributions and the non-adaptive Iws
has nice coverage when both distributions are symmetric. For Iadp_sw, the coverage probability is close to the nominal
level for normal, contaminated normal, and double exponential distributions. But for heavy-tailed t3 distribution and
the short-tailed uniform distribution, the coverage probability of the Iadp_sw tends to be slightly higher (about 1–2%
higher) than the nominal 95%. This may be due to the fact that the Shapiro–Wilk test has high power for heavy-tailed
t3 and short-tailed uniform distributions, and the log-transformed confidence interval Ilogdoes not work as well as the
WS confidence interval in those situations.

For slightly skewed �2
8, all the three intervals have coverage close to the nominal 95% for all the sample sizes and

standard deviation ratios considered. However, for heavily skewed lognormal and exponential distributions, unless the
two standard deviations are equal, the coverage for Iws interval was lower than the nominal level. In some situations
(lognormal), it is even lower than 90%. On the other hand, the two adaptive intervals have coverage probability much
closer to the nominal level. Between the two adaptive intervals, the Iadp_s has better coverage than the Iadp_sw for
exponential distribution and the lognormal distribution when the sample sizes are large (nX = 40, nY = 20).

Table 2 presents the coverage probabilities when two distributions are not from the same family. The simulation
shows that when one sample is from normal, the other is 10% contaminated normal, the coverage for all three intervals
are about the same: they are all slightly higher than the nominal 95% except when the two standard deviations are equal.
When one sample is normal, and the other is slightly skewed �2

8, all three intervals have coverage close to the nominal
95%. When one sample is �2

8, and the other is very skewed lognormal distribution with larger standard deviations,
none of the three intervals has good coverage. When the �2

8 has larger standard deviations than the lognormal, the
non-adaptive Iws has coverage close to the nominal 95%, while the adaptive intervals Iadp_s and Iadp_sw have coverage
2% and 4%, respectively, lower than the nominal level. This might be due to the fact that adaptive procedure requires
that both distributions are not symmetric (or normal) in order to perform the log-transformation, while the symmetry
test (or Shapiro–Wilk test) has low power to detect asymmetry for slightly skewed �2

8 distribution. Hence the log-
transformation is not really kicked in to improve the performance. When both distributions are very skewed, i.e., one is
lognormal and the other is exponential, the non-adaptive Iadp_s has coverage below 90% when the standard deviation
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Table 1
Coverage probability for samples from the same familya

Standard deviation ratio (�Y /�X)

0.2 0.25 1/3 0.5 1 2 3 4 5

Normal distribution
Iws 0.9480 0.9498 0.9479 0.9521 0.9499 0.9446 0.9466 0.9487 0.9503
Iadp_sw 0.9487 0.9498 0.9484 0.9527 0.9502 0.9449 0.9471 0.9491 0.9510
Iadp_s 0.9486 0.9498 0.9481 0.9525 0.9503 0.9448 0.9468 0.9490 0.9505
Iws 0.9491 0.9484 0.9481 0.9501 0.9495 0.9485 0.9515 0.9487 0.9501
Iadp_sw 0.9499 0.9489 0.9488 0.9507 0.9502 0.9489 0.9520 0.9496 0.9504
Iadp_s 0.9494 0.9486 0.9486 0.9502 0.9497 0.9489 0.9517 0.9489 0.9502

Contaminated normal distribution
Iws 0.9562 0.9565 0.9545 0.9564 0.9534 0.9577 0.9550 0.9550 0.9500
Iadp_sw 0.9625 0.9605 0.9601 0.9613 0.9590 0.9624 0.9593 0.9598 0.9538
Iadp_s 0.9568 0.9572 0.9555 0.9574 0.9540 0.9584 0.9559 0.9555 0.9507
Iws 0.9518 0.9497 0.9482 0.9485 0.9505 0.9543 0.9520 0.9542 0.9549
Iadp_sw 0.9603 0.9590 0.9582 0.9582 0.9576 0.9622 0.9591 0.9618 0.9627
Iadp_s 0.9525 0.9505 0.9490 0.9493 0.9511 0.9551 0.9523 0.9545 0.9552

Double exponential distribution
Iws 0.9541 0.9569 0.9508 0.9513 0.9469 0.9522 0.9547 0.9540 0.9506
Iadp_sw 0.9601 0.9623 0.9564 0.9583 0.9532 0.9582 0.9597 0.9601 0.9570
Iadp_s 0.9551 0.9580 0.9519 0.9528 0.9493 0.9543 0.9565 0.9549 0.9517
Iws 0.9512 0.9498 0.9506 0.9509 0.9539 0.9527 0.9527 0.9539 0.9569
Iadp_sw 0.9617 0.9603 0.9602 0.9601 0.9631 0.9623 0.9612 0.9621 0.9648
Iadp_s 0.9525 0.9523 0.9533 0.9529 0.9549 0.9535 0.9533 0.9542 0.9572

t3 Distribution
Iws 0.9579 0.9510 0.9525 0.9533 0.9592 0.9555 0.9579 0.9618 0.9563
Iadp_sw 0.9645 0.9581 0.9601 0.9601 0.9661 0.9615 0.9639 0.9685 0.9627
Iadp_s 0.9587 0.9527 0.9541 0.9540 0.9609 0.9570 0.9589 0.9633 0.9577
Iws 0.9535 0.9562 0.9533 0.9531 0.9588 0.9551 0.9549 0.9561 0.9553
Iadp_sw 0.9655 0.9691 0.9652 0.9632 0.9694 0.9639 0.9635 0.9651 0.9657
Iadp_s 0.9557 0.9595 0.9548 0.9550 0.9599 0.9559 0.9555 0.9568 0.9557

Uniform distribution
Iws 0.9491 0.9468 0.9508 0.9504 0.9488 0.9465 0.9518 0.9495 0.9506
Iadp_sw 0.9573 0.9567 0.9601 0.9587 0.9595 0.9552 0.9601 0.9593 0.9614
Iadp_s 0.9512 0.9495 0.9524 0.9517 0.9510 0.9496 0.9531 0.9521 0.9529
Iws 0.9505 0.9501 0.9505 0.9496 0.9509 0.9472 0.9490 0.9457 0.9497
Iadp_sw 0.9647 0.9638 0.9663 0.9649 0.9683 0.9664 0.9690 0.9647 0.9685
Iadp_s 0.9524 0.9524 0.9539 0.9520 0.9527 0.9484 0.9503 0.9465 0.9504

�2
8 Distribution

Iws 0.9415 0.9418 0.9435 0.9457 0.9512 0.9453 0.9433 0.9439 0.9471
Iadp_sw 0.9469 0.9478 0.9483 0.9484 0.9484 0.9486 0.9479 0.9497 0.9523
Iadp_s 0.9429 0.9435 0.9450 0.9460 0.9505 0.9460 0.9446 0.9469 0.9487
Iws 0.9481 0.9463 0.9475 0.9478 0.9494 0.9441 0.9398 0.9424 0.9424
Iadp_sw 0.9593 0.9576 0.9563 0.9507 0.9471 0.9487 0.9431 0.9486 0.9477
Iadp_s 0.9517 0.9496 0.9501 0.9491 0.9481 0.9448 0.9409 0.9433 0.9443

Lognormal distribution
Iws 0.8806 0.8864 0.8944 0.9258 0.9629 0.9233 0.8970 0.8903 0.8836
Iadp_sw 0.9596 0.9478 0.9351 0.9130 0.9490 0.9126 0.9352 0.9511 0.9562
Iadp_s 0.9287 0.9199 0.9162 0.9118 0.9497 0.9107 0.9165 0.9254 0.9241
Iws 0.9111 0.9184 0.9318 0.9470 0.9513 0.9035 0.8874 0.8820 0.8770
Iadp_sw 0.9728 0.9603 0.9414 0.9175 0.9473 0.9318 0.9493 0.9546 0.9545
Iadp_s 0.9602 0.9526 0.9375 0.9199 0.9433 0.9281 0.9416 0.9455 0.9419

Exponential distribution
Iws 0.9250 0.9223 0.9294 0.9408 0.9568 0.9395 0.9338 0.9210 0.9235
Iadp_sw 0.9677 0.9653 0.9640 0.9525 0.9524 0.9507 0.9667 0.9649 0.9690
Iadp_s 0.9425 0.9419 0.9424 0.9429 0.9515 0.9422 0.9457 0.9413 0.9435
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Table 1 (Continued)

Standard deviation ratio (�Y /�X)

0.2 0.25 1/3 0.5 1 2 3 4 5

Iws 0.9345 0.9389 0.9407 0.9540 0.9490 0.9293 0.9177 0.9207 0.9184
Iadp_sw 0.9833 0.9793 0.9720 0.9528 0.9475 0.9587 0.9581 0.9595 0.9613
Iadp_s 0.9617 0.9602 0.9589 0.9523 0.9425 0.9459 0.9401 0.9439 0.9461

aFor each distribution, the first three rows are for sample sizes nX = nY = 20, the fourth to sixth rows are for sample sizes nX = 40 and nY = 20.
The simulation was done by: first draw two random samples from the same distribution, then multiply the second sample by the corresponding
standard deviation ratio.

Table 2
Coverage probability when two distributions are from different familiesa

Standard deviation ratio (�Y /�X)

1 2 3 4 5

nX = nY = 20 X is normal, Y is contaminated normal
Iws 0.9500 0.9615 0.9695 0.9787 0.9777
Iadp_sw 0.9508 0.9634 0.9712 0.9797 0.9790
Iadp_s 0.9502 0.9627 0.9704 0.9795 0.9783

nX = 40, nY = 20
Iws 0.9544 0.9604 0.9703 0.9779 0.9811
Iadp_sw 0.9549 0.9623 0.9720 0.9791 0.9825
Iadp_s 0.9547 0.9604 0.9704 0.9781 0.9813

nX = 20, nY = 40
Iws 0.9496 0.9533 0.9603 0.9653 0.9650
Iadp_sw 0.9500 0.9569 0.9643 0.9687 0.9682
Iadp_s 0.9498 0.9556 0.9649 0.9705 0.9700

0.2 0.25 1/3 0.5 1 2 3 4 5
X is normal, Y is �2

8
Iws 0.9504 0.9492 0.9492 0.9471 0.9479 0.9448 0.9452 0.9371 0.9408
Iadp_sw 0.9521 0.9517 0.9512 0.9497 0.9492 0.9469 0.9475 0.9385 0.9423
Iadp_s 0.9514 0.9502 0.9500 0.9479 0.9486 0.9456 0.9464 0.9379 0.9413
Iws 0.9492 0.9528 0.9469 0.9528 0.9420 0.9432 0.9451 0.9418 0.9440
Iadp_sw 0.9516 0.9543 0.9476 0.9539 0.9435 0.9445 0.9467 0.9433 0.9454
Iadp_s 0.9503 0.9539 0.9473 0.9531 0.9423 0.9435 0.9455 0.9423 0.9441

X is �2
8, Y is lognormal

Iws 0.9445 0.9470 0.9501 0.9472 0.9546 0.9232 0.8973 0.8820 0.8788
Iadp_sw 0.9132 0.9222 0.9188 0.9177 0.9142 0.8479 0.8243 0.8127 0.8164
Iadp_s 0.9273 0.9294 0.9325 0.9292 0.9312 0.8846 0.8596 0.8455 0.8448
Iws 0.9487 0.9501 0.9491 0.9524 0.9417 0.9051 0.8763 0.8740 0.8776
Iadp_sw 0.9120 0.9127 0.9068 0.9181 0.8748 0.7692 0.7447 0.7445 0.7503
Iadp_s 0.9281 0.9249 0.9227 0.9339 0.9256 0.8742 0.8490 0.8458 0.8497

X is lognormal, Y is exponential
Iws 0.8858 0.8840 0.8998 0.9213 0.9572 0.9393 0.9299 0.9228 0.9235
Iadp_sw 0.9624 0.9564 0.9435 0.9249 0.9336 0.9390 0.9554 0.9557 0.9601
Iadp_s 0.9237 0.9202 0.9208 0.9185 0.9365 0.9344 0.9418 0.9388 0.9418
Iws 0.9079 0.9158 0.9296 0.9490 0.9485 0.9341 0.9251 0.9219 0.9248
Iadp_sw 0.9518 0.9685 0.9478 0.9455 0.9386 0.9511 0.9563 0.9534 0.9506
Iadp_s 0.9533 0.9463 0.9381 0.9435 0.9389 0.9480 0.9486 0.9480 0.9446

aFor last three sets of families, the first three rows are for sample sizes nX = nY = 20, the fourth to sixth rows are for sample sizes nX = 40 and
nY = 20. The simulation was carried out in the following way to guarantee that the standard deviation ratio is at the given level: for the normal and
contaminated normal case, choose the variance of the contamination; for the normal and �2

8 case, choose the variance of the normal; for the �2
8 and

lognormal case, choose the mean of the lognormal; for the lognormal and exponential case, choose the rate of the exponential distribution.
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ratio is less than 1
3 for small sample size situations. However, both adaptive intervals perform well, and their coverage

probabilities are close to the nominal 95%.
The following list summarizes the main results of the coverage probabilities:

• When the two distributions are either symmetric or only slightly skewed, no matter whether they are from the
same family or not, all the three intervals have coverage probabilities close to the nominal level. Among the three,
the non-adaptive Iws and the symmetry adaptive interval Iadp_s have better coverage than the Iadp_sw.

• When one distribution is slightly skewed and the other is very skewed, none of the interval has acceptable coverage.
Further research is needed in this situation.

• When both distributions are very skewed, Iws is not acceptable as its coverage may drop below 90% in some
situations, but both adaptive intervals have acceptable coverage probabilities. The Iadp_s has the best overall
coverage.

4. Expected length

Besides coverage probability, length is an important factor as well in judging the performance of a confidence
interval. Let Lws, Ladp_sw and Ladp_s denote the length of Iws, Iadp_sw and Iadp_s, respectively. Table 3 provides
simulation results for the ratio of expected length of Iadp_sw and Iadp_s to that of Iws, i.e., E[Ladp_sw]/E[Lws] and
E[Ladp_s]/E[Lws] for sample sizes nX = nY = 20 and nX = 40, nY = 20 when two samples are from the same family.

Clearly, almost all the ratios are bigger than 1 which indicates that the Iws has the shortest expected length among
the three intervals considered. Notice that the length of the Shapiro–Wilk adaptive interval Iadp_sw sometimes can be
2 or 3 times wider than the other two intervals. On the other hand, its coverage is not significantly higher than that of
the symmetry adaptive interval Iadp_s, hence using the interval Iadp_sw is not recommended. From now on, we only
compare the non-adaptive Iws to the symmetry adaptive interval Iadp_s.

For normal and �2
8 distributions, when sample sizes are equal or the larger sample is associated with smaller variances,

the adaptive interval Iadp_s has about the same width as the Iws; when the larger sample is associated with larger variances,
the adaptive interval Iadp_s is about 4–7% wider than the Iws. For contaminated normal, double exponential, and uniform
distributions, when the larger sample is associated with smaller variances, the adaptive interval Iadp_s is about 2–4%
wider than the Iws; when the larger sample is associated with larger variances or when the sample sizes are equal, the
adaptive interval Iadp_s is about 10–15% wider than the Iws. However, for heavy-tailed t3 distribution, the Iadp_s can be
about 20–30% wider than the Iws. For very skewed lognormal and exponential distributions, when the sample sizes are
equal, the adaptive Iadp_s is about 10–20% (20–40% for exponential) wider than the non-adaptive Iws; when the larger
sample is associated with smaller variances, the adaptive interval Iadp_s is about 7% (or 40% for exponential) wider
than the Iadp_s; when the larger sample is associated with larger variances, the adaptive interval Iadp_s is about 30%
(or 80% for exponential) wider than the Iws. Notice that for lognormal distributions, when the standard deviations are
actually equal, the adaptive Iadp_s is shorter than the non-adaptive Iws. Its coverage is also very close to the nominal
level. This is not surprising as the symmetry test has high power on the very skewed lognormal distribution, and the
log-transformed data are normal, hence the adaptive interval Iadp_s works better than the non-adaptive Iws.

Table 4 provides the ratio of expected length when two samples come from different families. Note that this table only
reports the ratio of E[Ladp_s]/E[Lws] as the other interval, Iadp_sw, is not recommended. For normal and contaminated
normal case, when the larger sample is associated with smaller variances, the Ladp_s is about 7% wider than the Lws;
when the larger sample is associated with larger variances, the Ladp_s can be twice as wide as the Lws; when the
samples sizes are equal, the adaptive Ladp_s is about 20–40% wider than the Lws unless the variances are equal. For
normal and �2

8, when the normal has larger standard deviations, the Ladp_s is about 5% wider than the Lws; when the
�2

8 has larger standard deviations and sample sizes are small, the Ladp_s is about 10–15% wider than the Lws; when
the �2

8 has larger standard deviations and sample sizes are large, the Ladp_s has about the same size as the Lws. For
�2

8 and lognormal case, when the skewed lognormal distribution has larger variances, the Ladp_s is actually narrower
than the Lws; when the lognormal has smaller variances, the Ladp_s can be twice as wide as the Lws. For lognormal
and exponential case, the Ladp_s is about 30% wider than the Lws when sample sizes are equal or the exponential
distribution has smaller variance; however, when the exponential distribution has larger variances, the Ladp_s is about
60% wider (nX = 40, nY = 20) than the Lws.
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Table 3
Ratio of expected length for samples from the same familya

Standard deviation ratio (�Y /�X)

0.2 0.25 1/3 0.5 1 2 3 4 5

Normal
E[Ladp_sw]/E[Lws] 1.06 1.05 1.06 1.06 1.05 1.07 1.08 1.07 1.08
E[Ladp_s]/E[Lws] 1.04 1.03 1.03 1.03 1.03 1.04 1.04 1.04 1.05
E[Ladp_sw]/E[Lws] 1.08 1.10 1.11 1.08 1.03 1.05 1.03 1.04 1.04
E[Ladp_s]/E[Lws] 1.06 1.06 1.07 1.06 1.02 1.01 1.01 1.02 1.01

Contaminated normal
E[Ladp_sw]/E[Lws] 2.18 2.32 2.23 2.25 2.27 2.41 2.49 2.62 2.56
E[Ladp_s]/E[Lws] 1.08 1.11 1.12 1.10 1.11 1.11 1.14 1.11 1.15
E[Ladp_sw]/E[Lws] 3.85 3.82 3.84 3.55 2.15 2.18 2.23 2.28 2.29
E[Ladp_s]/E[Lws] 1.17 1.18 1.17 1.15 1.05 1.04 1.04 1.04 1.04

Double exponential
E[Ladp_sw]/E[Lws] 1.96 1.98 2.03 2.05 2.04 2.18 2.24 2.33 2.30
E[Ladp_s]/E[Lws] 1.07 1.09 1.08 1.08 1.08 1.09 1.09 1.11 1.12
E[Ladp_sw]/E[Lws] 3.30 3.36 3.41 3.12 1.98 1.99 2.09 2.12 2.09
E[Ladp_s]/E[Lws] 1.14 1.15 1.14 1.12 1.04 1.03 1.03 1.03 1.03

t3
E[Ladp_sw]/E[Lws] 2.60 2.81 2.82 2.91 2.94 3.07 3.33 3.25 3.26
E[Ladp_s]/E[Lws] 1.18 1.20 1.21 1.22 1.22 1.21 1.29 1.30 1.24
E[Ladp_sw]/E[Lws] 4.84 4.97 4.85 4.44 2.86 2.83 2.74 2.87 2.87
E[Ladp_s]/E[Lws] 1.38 1.37 1.33 1.35 1.12 1.10 1.09 1.11 1.11

Uniform
E[Ladp_sw]/E[Lws] 1.49 1.51 1.54 1.55 1.42 1.63 1.66 1.67 1.69
E[Ladp_s]/E[Lws] 1.06 1.08 1.07 1.07 1.05 1.07 1.08 1.08 1.09
E[Ladp_sw]/E[Lws] 2.54 2.59 2.57 2.48 1.54 1.68 1.76 1.79 1.77
E[Ladp_s]/E[Lws] 1.11 1.12 1.12 1.11 1.02 1.03 1.03 1.03 1.04

�2
8

E[Ladp_sw]/E[Lws] 1.07 1.06 1.06 1.05 1.00 1.05 1.06 1.07 1.07
E[Ladp_s]/E[Lws] 1.02 1.02 1.02 1.01 1.00 1.02 1.02 1.02 1.02
E[Ladp_sw]/E[Lws] 1.22 1.21 1.19 1.11 1.00 1.04 1.05 1.05 1.06
E[Ladp_s]/E[Lws] 1.07 1.07 1.06 1.04 1.00 1.01 1.01 1.02 1.02

Lognormal
E[Ladp_sw]/E[Lws] 1.24 1.22 1.16 1.04 0.89 1.06 1.16 1.21 1.24
E[Ladp_s]/E[Lws] 1.17 1.16 1.11 1.01 0.90 1.03 1.11 1.14 1.16
E[Ladp_sw]/E[Lws] 1.43 1.38 1.27 1.06 0.87 1.00 1.06 1.08 1.08
E[Ladp_s]/E[Lws] 1.38 1.34 1.24 1.05 0.89 1.00 1.05 1.07 1.07

Exponential
E[Ladp_sw]/E[Lws] 1.86 1.86 1.81 1.69 1.43 1.70 1.81 1.84 1.86
E[Ladp_s]/E[Lws] 1.43 1.43 1.40 1.34 1.20 1.35 1.40 1.42 1.42
E[Ladp_sw]/E[Lws] 2.35 2.33 2.19 1.85 1.39 1.56 1.59 1.60 1.61
E[Ladp_s]/E[Lws] 1.88 1.87 1.76 1.54 1.23 1.36 1.39 1.40 1.40

aFor each distribution, the first two rows are for nX = nY = 20, the third and fourth rows are for nX = 40 and nY = 20. The simulation was done
by: first draw two random samples from the same distribution, then multiply the second sample by the corresponding standard deviation ratio.

The following list summarizes the main findings for expected length:

• The Shapiro–Wilk adaptive interval Ladp_sw is sometimes 2–3 times wider than the other intervals, hence using
this interval is not recommended.

• The non-adaptive Lws has the smallest length in most cases.
• The ratio E[Ladp_s]/E[Lws] is closer to 1 when larger sample is associated with smaller variance.
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Table 4
The E[Ladp_s]/E[Lws] when two distributions are from different familiesa

Standard deviation ratio (�Y /�X)

1 2 3 4 5

X is normal, Y is contaminated normal
nX = nY = 20 1.04 1.20 1.30 1.41 1.47
nX = 40, nY = 20 1.01 1.03 1.07 1.07 1.06
nX = 20, nY = 40 1.02 1.32 1.78 2.22 2.55

0.2 0.25 1/3 0.5 1 2 3 4 5

(Normal, �2
8) 1.05 1.05 1.04 1.04 1.12 1.15 1.14 1.13 1.15

1.05 1.05 1.05 1.04 1.01 1.01 1.02 1.01 1.01
(�2

8, Lognormal) 1.43 1.45 1.43 1.36 1.14 0.95 0.93 0.93 0.93
2.13 2.13 2.04 1.81 1.17 0.95 0.95 0.95 0.95

(Lognormal, Exp.) 1.37 1.36 1.31 1.20 1.07 1.20 1.27 1.30 1.31
1.66 1.62 1.50 1.25 1.13 1.25 1.29 1.30 1.30

aFor last three sets of families, the first row is for sample sizes nX = nY = 20, the second row is for sample sizes nX = 40 and nY = 20. The
simulation was carried out in the following way to guarantee that the standard deviation ratio is at the given level: for the normal and contaminated
normal case, choose the variance of the contamination; for the normal and �2

8 case, choose the variance of the normal; for the �2
8 and lognormal case,

choose the mean of the lognormal; for the lognormal and exponential case, choose the rate of the exponential distribution.

• When both distributions are symmetric or only slightly skewed, the E[Ladp_s] is only slightly larger than E[Lws].
If one distribution or both distributions are very skewed, the E[Ladp_s] is much larger than E[Lws].

5. Conclusion and discussions

This paper studies three confidence intervals for the difference between two means when both normality and homo-
geneity of variance assumptions are violated. The paper shows that using the Shapiro–Wilk test of normality as the
pre-test, whether the homogeneity of variance assumption is satisfied or not, provides counter productive results. This
is consistent with the results in Schucany and Ng (2006) for one-sample t-test. They concluded that graphic diagnostics
are better practice than a formal pre-test. Furthermore, the paper shows that the WS interval works well for symmetric
non-normal distributions regardless of the standard deviation ratio. In other words, the more important feature is the
symmetry of the underlying distributions, not the normality. This may be due to the fact that the Central Limit Theory
supports the Welch–Satterthwaite t-approximation when the underlying distributions are symmetric.

This paper shows that if both the underlying distributions are skewed and the homogeneity of variances assumption is
also violated, the Welch–Satterthwaite interval has much lower coverage probability than the nominal level. The paper
thus proposes an adaptive interval incorporating a pre-test of symmetry for underlying distributions. If the pre-test
concludes neither distribution is symmetric, we propose to use an interval that first transforms the data into logarithm,
then applies the WS interval to the log-transformed data and finally adjusts log-interval back to the original scale. Our
simulation study shows that this adaptive interval performs as well as the WS interval for symmetric distributions,
while it has much better coverage probability than the WS interval for skewed distributions. Therefore, the use of the
adaptive interval Iadp_s when the underlying distributions are generally unknown is recommended.
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