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Abstract—In recent years, compressed sensing (CS) has been ap-
plied in the field of synthetic aperture radar (SAR) imaging and
shows great potential. The existing models are, however, based on
application of the sensing matrix acquired by the exact observa-
tion functions. As a result, the corresponding reconstruction algo-
rithms are much more time consuming than traditional matched
filter (MF)-based focusing methods, especially in high resolution
and wide swath systems. In this paper, we formulate a new CS-SAR
imaging model based on the use of the approximated SAR obser-
vation deducted from the inverse of focusing procedures. We in-
corporate CS and MF within an sparse regularization framework
that is then solved by a fast iterative thresholding algorithm. The
proposed model forms a new CS-SAR imaging method that can
be applied to high-quality and high-resolution imaging under sub-
Nyquist rate sampling, while saving the computational cost sub-
stantially both in time and memory. Simulations and real SAR data
applications support that the proposed method can perform SAR
imaging effectively and efficiently under Nyquist rate, especially
for large scale applications.

Index Terms—Approximated observation, compressed sensing,
matched filtering, synthetic aperture radar.

I. INTRODUCTION

YNTHETIC aperture radar (SAR) is an active microwave

radar that can achieve high-resolution images in all times
of day and weather [1]. In an SAR system, the radar emits a
sequence of pulses along its path and receives the echoes (raw
data) scattered from the targets. The reconstruction of the scene
is traditionally achieved by matched filter (MF)-based focusing
algorithms that are efficient but need Nyquist rate samples of the
echoes. The SAR imaging with increasing resolution and swath
requires more and more measurements, storage, and downlink
bandwidth. The current system hardware, however, frequently
hampers such high-dimensional application.

The recent development of compressed sensing (CS) brings
the possibility of reconstructing sparse or compressible signals
with fewer measurements than that Nyquist requires [2][3][4].
Several applications on radar system appear in recent years,
which primarily concern how the data acquisition procedure can
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be simplified by using CS [5], [6] and what the potential appli-
cations will renovate radar imaging with CS technique [7], [8].
Further, in the study of CS-SAR, much attention has been paid
to the effective use of the specific SAR geography and signal
form, say, in [9], an SAR raw data compression framework
based on CS was suggested by sampling the data in frequency
domain. An extension of this work was given in [10] by using
the fact that very bright objects are always sparse, resulting in
a hybrid sparse model. These works, however, do not apply to
the CS-SAR system practically where sampling is expected in
time-domain. In [11], CS was applied on azimuth after the range
compression. By combining range MF, the method was much
more efficient, while, the redundant information in range has
not been effectively utilized. More general CS-SAR model were
reported in [12], [13] by discretizing the SAR observation func-
tion exactly into an observation matrix, while solving by CS
straightforwardly.

All those works strongly demonstrated that some exclusive
advantages of CS-SAR do exist as compared with the tradi-
tional SAR imaging methodologies, say, relaxation of required
measurements, reduction of sidelobe, and a further suppression
of noise [14]. However, in all applications, a serious drawback
has been observed: as compared with the traditional MF-based
methods, the computational complexity and memory cost of the
CS-SAR models are much higher so that it is very inefficient to
be applied to high-dimensional applications.

In this paper, we formulate a new CS-SAR framework within
which the computational complexity of the CS-SAR imaging
can be significantly reduced. Our main idea is to replace the
exact observation function in the CS-SAR framework with ap-
proximated observations derived from the inverse of traditional
MF based procedures. Such inversion has always been applied
to yield raw signals (the echoes) in a more economical way
[15], [16] but requires high accuracy of the adopted method.
In this paper, we take a further step by incorporating it into the
CS framework, which demands only a well-focusing ability
to ensure CS reconstruction. We propose to implement the
CS-SAR imaging through the sparse regularization scheme,
which is then solved by an iterative thresholding algorithm
(ITA). Accordingly, the fast speed and high efficiency of the
new method are guaranteed, respectively, from the use of the
approximated observation and from the CS reconstruction
procedure. We show that the new CS-SAR imaging method
can not only acquire high-quality and high-resolution images
with significantly reduced measurements, but also reduces
the memory cost to @(n) and computational complexity of
one-step iteration to O(nlogn), achieving the same order with
the traditional SAR imaging methods.

The reminder of the paper is organized as follows. In
Section II, we introduce the background knowledge on the
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stripmap mode SAR system and the classical CS-SAR model.
In Section III, we present the approximated observation by cal-
culating the inverse of MF imaging procedure. In Section IV,
we formulate the new CS-SAR imaging method through
hybridizing the approximated observation and sparse regular-
ization. In Section V, we show the simulation and application
results of the suggested method. Conclusions are then presented
in Section VI with some useful remarks.

Notation: We will use the subsequent notations throughout
the paper: Column vectors, matrices, and operators will be de-
noted, respectively, by bold lower case, x, bold upper case, A,
and roman upper case, C. AT, A*, and AH denote the trans-
pose, conjugate, and Hermitian transpose of A, respectively.

II. CS-SAR MODELS BASED ON EXACT OBSERVATION

In this section, some preliminary knowledge of CS-SAR
imaging is summarized. We focus on the general formalization
of CS-SAR model, with a more detailed introduction of the
iterative thresholding procedures for solution of the CS-SAR
models.

A. Stripmap Mode SAR Model

In the stripmap mode SAR, the antenna is pointed to a fixed
direction and the platform flights with constant velocity v. Then,
a complex baseband p.(7), usually chirp, is modulated to real
pulse p(7) = cos(2x for + S(T))(—(ts/2) < T < (t:/2))
(fo is the carrier frequency, 7 is the range time, and # is the
pulse duration) and is transmitted at a constant pulse repeti-
tion frequency (PRF). The received backscattered energy can
then be modeled as a convolution of the pulse waveform with
the ground reflectivity function. More specifically, the received
echoes s at time (7', 7') can be expressed by

s(n', ) ://0‘(’{/,7‘){](7}/7T],T/;T)d’r]dT—‘r’rL[)(’r}/,T,) (1)

where

gln'—=n,7"57)

R iR R
:wn(n,_n)w‘r (7—,_ 27) exp |:_ WT'F(/) (7—/— 27):| B (2)

A is the carrier wavelength, ¢ is the velocity of light, w is the
envelope function, R(n' —1;7) = \/(7¢/2) + [v(n’ — n)]? is
the slant range, ng (7, 7'} is the complex Gaussian noise.

Further, we can sample the continuous-time analog echo s
and discrete the reflectivity map o, into two-dimensional arrays
Y € C"*"r and X € C"*". And then we obtain the fol-
lowing observation model for the strip mode SAR:

y = Hx + ng 3)
where y = vec(Y) € C1 1 = n), x nl,x = vece(X) €
crxl gy = 1, X nr, and H is the observation matrix acquired
from the discrete weight of (1) (more detailed information and
construction of the observation model can be seen in [17] and
[18]), and ny is the noise.

Algorithm 1: Soft Iterative Thresholding Algorithm

Require: Measurements y,, sensing matrix A
Ensure: The recovery signal x
Initial: (), \, ;¢ and max iteration I,y
1: for i = 0 to 1. do
2:  Gradient descent step: g1 = x4+
pAT(y, — Ax@)
3: Thresholding: x(FY) = E; 5, (g"+)
4: end for

B. Formulation of CS-SAR Models

In a CS-SAR model, the data y is sampled and compressed
with a proper sampling matrix © € R™*!, m < n, resulting in

vs = OHx + n,. 4)

When x is a sparse signal, say, most of the entries of x are
zeros, the theory of CS tells when and how it can be recovered
from the above undetermined linear system with fewer measure-
ments than Nyquist criterion requires [2], [4]. Generally, consid-
ering an ill-posed linear system y, = Ax (A = OH), where
X is sparse enough, if the sensing matrix A satisfies some con-
ditions like RIP [19], x can be exactly recovered from y; with
the L, (quasi-norm) (0 < ¢ < 1) optimization:

min ||x]|; st ys = Ax. %)
X

To solve (5), one may use the interior point method and greedy

strategies like OMP. However, they always require deeper in-

formation of A that are not suitable for the to be established

problem. As an alternative, we suggest use of an equivalent reg-

ularization scheme with the following optimization problem:

n;in {HYS - AXHg + )‘HXHZ} (©)

where A is a regularization parameter. The optimization can be
efficiently solved by iterative thresholding algorithm (ITA) [20],
[21], [22]. In detail, an ITA generates a sequence of approxi-
mates according to

<+ — Eyan (x(i) + MAH (ys _ Ax(i)>> (7

where £+ is a normalized parameter that controls the convergence
ofthe iteration. In (7), E,; » (o = Ap) is a so-called thresholding
operator, which is defined in terms of components by

Byo(%) = (6,0 (X1), 0 (X2), - 000 (%a))T (8)

where e;, can be analytically specified when ¢ =
0,1/2,2/3,1. For example, the widely used soft-thresh-
olding, which corresponds to ¢ = 1, is

if [z| > o
otherwise.

e1.0(a) = { (S)%’II(ZL‘) (] — o), o
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With (7) and (8), ITA can be viewed as an extension of the gra-
dient descent method by introducing a thresholding procedure in
each step. The detail implementation of the standard soft thresh-
olding can be seen in Algorithm 1.

It can be seen that the main computation load in implemen-
tation of (7) comes from the calculation of the time-domain
correlation A®Ax. From the viewpoint of SAR signal pro-
cessing, this corresponds to the backscattered projection pro-
cedure, which is known to be inefficiency for reconstruction,
even implemented by convolution as in (1). On the other hand,
we notice that there exists efficient focusing methods using MF
in traditional SAR signal processing. This type of processing
is in the frequency domain, which is much faster. Moreover,
unlike the MF-based method which is usually decoupled, the
sensing matrix H in (7) owns an intrinsically two-dimensional
structure that has to be collected and stored before imaging.
Although some compression can be incorporated according to
the structure of the matrix, it still consumes a huge memory.
All these difficulties then hamper effective applications of the
known CS-SAR imaging.

The aim of the present research is to suggest a new CS-SAR
imaging method, which replaces the use of the exact observa-
tion model by an well-defined approximation, and then makes it
possible to reconstruct the sparse scene x via a sequence of 1-D
operations. Thus, the very high cost of calculation and memory
of the existing CS-SAR imaging methods can be significantly
reduced.

III. APPROXIMATED OBSERVATION

In this section, we first explain why an approximated observa-
tion is needed and feasible, and then we provide an example to
show how an approximated observation operator can be explic-
itly constructed by virtue of a concrete example from the inverse
of'the Range-Doppler Algorithm (RDA). A relation between the
constructed approximation and the corresponding focus method
is analyzed, which then serves as the basis of the development
of new method in the next section.

A. Why Approximation Needed

It is known that MF is fast with O(n log n) complexity, which
is, among the others, mainly due to frequency-domain opera-
tions. More precisely, if we denote M, the imaging procedure
by MF, like RDA, the SAR raw data can be well focused in some
conditions by

x =My (10)
where M is the traditional MF imaging procedure that can be
calculated through decoupling it into a series of 1-D operators
in the frequency domain. This normally leads to an O(n log )
complexity when fast Fourier transformation (FFT) type opera-
tions are employed.

Observing these advantages, the purpose of this paper is to
accelerate the known CS-SAR imaging procedures so as to
achieve a comparable (at the same order) complexity with the
traditional MF based methods.

A natural consideration is then to look for the possibility of
integrating CS and MF. However, a direct application on the de-
coupling of H is impossible, because H intrinsically possesses
2-D structure. Nevertheless, it is known from (10) that x always

H M
Scene »| Raw Echo “| MFoOutput
&
-i%
06" ®
G,L
% &
] W
Compressed
Measurements
Sparse Sparse Less Sparse

Fig. 1. Relations between exact observation and approximated observation.

approximates x, say, MH = I, and hence, M1, whenever it
exists, approximates the observation H. In viewing that M is
decoupled, it can then naturally be expected that M~ is decou-
pled, as well. Thus, we can expect that under certain conditions,
some types of approximations of H can be decoupled so as to
bring an O(n logn) complexity.

This is why we would like to approximate the observation,
and in the following, we will introduce the details on how to
construct and what constraints an appropriate approximation
observation.

B. How to Construct an Admissible Approximated Observation

Fig. 1 draws the main relations between CS-SAR observa-
tion and MF reconstructions. It can be seen that whenever the
imaging procedure M is accurate enough, M~ can be viewed
as an admissible substitute of H. This provides a general prin-
ciple of how the observation H can be remodeled and approx-
imated by any high-precision imaging (or reconstruction) pro-
cedure. We formalize this principle further as

G=M1!~H (11)
where G is any generalized right inverse of M, and M is any
a high-precision imaging procedure. We call G henceforth an
approximated observation.

However, since there are many well-known imaging proce-
dures that provided various tradeoffs on imaging accuracy and
complexity. Therefore, we need to further define the extent of
accuracy and identify the constraints under the CS-SAR frame-
work. To see this, let us compare the exact observation model
and the approximated observation model:

ys = OHx = 6Gx. (12)
It can be seen that by using approximated observation, other
than reconstruct x, we actually reconstruct x instead, which is
assumed to be an approximation of x, when it obeys to the fol-
lowing relation:

X=p.ox+s, (13)
where o denotes the Hadamard product, p. denotes the phase
error while s, is the error for sidelobe or, more severely, the
artifacts from unfocusing. Formally, when (13) holds, there ex-
ists an acceptable solution with the approximated observation
model. However, to find it under CS, we should further empha-
size the better focusing ability of M.

As we know, a key parameter in CS-SAR, different from tra-
ditional SAR, is the sampling rate that measures how an SAR
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system benefits from CS. The least amount of samples to en-
sure the reconstruction is incoherently determined by the spar-
sity of scene x, which is usually irrelevant of the distribution
and phases of targets in the scene. Thus, the difference of the
sparsity between x and X determines when and how much of
the additional measurements do the approximated observation-
based CS-SAR methods need. It can be immediately seen from
(13) that the difference is uniquely characterized via s.. That
is to say, whenever the sidelobes reconstructed from M is low
enough, s, can be ignored, then x and X can keep the same
sparsity. In this situation, the required least sampling rate of the
approximated observation model equals the original model. In
turn, to prevent the approximated observation-based CS-SAR
method from demanding more samples, the sidelobe should be
as low as possible, or, equivalently, a well-focused capacity
should be a criterion to determine whether a specific focusing
method can be used to construct the approximated observation.

The above discussions relate the fact that the construction
of the approximated observation is quite reflexible, which
can be acquired straightforwardly based on well-established
algorithms with additional requirement on the focusing
ability. In Section III-C, we present a concrete example using
Range-Doppler-algorithm (RDA)[23] to show how an admis-
sible approximated observation G can be simply constructed
based on this principle.

C. A Concrete Example

RDA is a very popular procedure for stripmap mode SAR
imaging that is simple both in comprehension and in imple-
mentation. The procedure (under the low squint case) consists
of three main steps (operations): 1) the range compression, 2)
RCMC, and 3) azimuth compression. In a compact form, the
imaging procedure M, operated on 2-D array, can then be ex-
pressed as follows:

= F? {P,] o C <F,’ [P;o

X = M(Y) (YF)|FZ)} (14)
where X (X = vec(X)) is the reconstructed 2D SAR image,
F and F!, respectively, are the DFT matrix and inverse DFT
matrix (in practice, they are implemented by FFT) to perform,
the subscripts 7 and 7 denote the direction of azimuth and
range where the FFT performs along, and P,, and P are the
frequency-domain matched filter operations along azimuth and
range, which can be always defined, respectively, by

P'r](fn; T) =exp [_777/Kaf,ﬂ P‘r(f‘r) =exp [_JW/Krfz] :

(15)
In (15), f,, f+ are the frequency along the Doppler and range,
and K, and K, are the azimuth FM rate and the pulse FM rate.
In (14), C is the RCMC interpolation operator, which is essen-
tially a space-variant shift and is always approximated by the

truncated sinc-kernel interpolation with U = C(V) as
=2 VU7

where Ar is the migration (measurement in time) to be cor-
rected, and U and V are the signals before and after RCMC,
respectively.

Jsine(7 — (1 + Ar(fy, 7)) (16)

With such specific operations in RDA procedure, we now can
derive the inverse of M quite simply by taking the inverse of
every subprocedure. The details are as follows.

i) The inverse of Fourier transformations F', F¥ are known
as the inverse transformations, which are given by F!, F.
It is important to keep the throw-away consistent between
the pairs.

ii) It is known that phase multiplication is a unitary trans-
formation so that the inverse is the multiplication of the
conjugate phase P, P7, and the Hadamard multiplica-
tion can still be applied in order.

iii) The inverse of C is difficult to achieve directly. In fact,
C is approximated from the accurate RCMC defined in a
continuous range time domain. Because the trajectories
of targets with different range gates are disjoint, this shift
is a one-to-one mapping, and the inverse of the origin
RCMC exists. We can also approximate through interpo-
lation V' = D(U) that

V([ 7) = Z U (fy, 7)sine (7 = (7 + Ar(fy, 7)) (17)

Based on the above exposition, the approximated observation
G deduced from RDA can then be explicitly expressed by

G(X) = {PXo(F}° [P} o(F,X)|F,)} FE.  (18)

We show that the so-constructed approximated observation
G has an interesting property: It is still a linear operator, and its
conjugate transposition equals to M.!

Theorem 1: G- is a linear operator with the property GH =
M.

Proof: The linearity of G and M is obvious because all the
suboperations are linear. Let x denote the vector form of X,
namely, x = vec(X). Then, by definition, the linear operators
G and M can be written as matrices, and we then have

vee (G(X)) = Gx = FIPIFIF, DPIF,x  (19)
vee (M(Y)) =My = FIP, CF,FIP. F.x (20
where
F,=1, @F, F, =Fl oI, 1)
P, =diag (vec(P,)), P, = diag (vec(P,)).  (22)
C and D are real matrices defined by
C(i,j) = sinc (J L Ar( )/ﬂ)
(23)

f)(zj) —qln(’( L4+ Ar(j /fb)
at locations (7 — j)modn, = 0, and 0 elsewhere. In (23), Ar =
vee(AR), AR is the discretion of Ar. Observing from (23)
and f; is the pulse sampling interval, it is easy to check that
D = CT. Consequently, comparing (20) and (19), we conclude
that G = MY, ]

Theorem 1 shows that we have actually taken the conjugate
transposition of M as an approximated observation of H. Such
coincidence plays an important role in the new method to be
suggested in the next section.

1Tt is to say G is nearly unitary, since only a minor approximation on calcu-
lation of the inverse is included.
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Fig. 2. Explanation of the proposed algorithm in one-step iteration. The compressed data is alternatively processed by MF and thresholding.

D. Generalization

The approach we have applied to define the approximated
observation by the inverse of RDA procedure can be generalized
in the following.

1) For high-squint cases, we can incorporate secondary com-

pression in RDA or derive an approximated observation
from the inverse of other focusing methods like the Chirp-
Scaling Algorithm (CSA), w — k algorithms, so as to en-
hance the focusing ability. With similar suboperations, like
FFT, phase multiplication, and interpolation, the acquisi-
tion of the inverse is just as same as RDA.
This principle can be applied to yield more general algo-
rithms; however, we will not enumerate all possible exten-
sions but remind that the decoupled structure of MF makes
the inverse always achievable. This is the reason why MF
is fast and why we propose to apply the approximated ob-
servation instead of the exact observation in the CS-SAR
imaging system.

2) In the above derivation, we have assumed that the trans-
mitted signal form is standard chirp and M focuses on both
the azimuth and range direction. In fact, the azimuth mod-
ulation is the exclusive property and the main difficulty of
SAR signal processing, while the range convolution, which
possesses a simple 1-D structure, can be modeled directly.
Therefore, we can apply the approximated observation to
nonchirp cases, by replacing P with the transmitted pulse,
which is always recorded in modern SAR systems. This ex-
tension is also of specific necessity in CS-SAR because the
design of the pulse form is also a very important issue.
Nevertheless, different from the exact observation, which
can be discreted from the arbitrary slant range, say, any po-
sition during the flight, the construction of approximated
observation relies highly on the SAR operation mode and
requires uniform samples. This makes the new model more
sensitive to the deviation and errors during the flight, and,
hence, more suitable in space-borne cases. However, this
limitation is not serious, since the goal of the present re-
search is to break the computational burden of large-scale
CS-SAR problem. Space-borne cases are just our main
target.

IV. CS-SAR IMAGING BASED ON
APPROXIMATED OBSERVATION

In this section, we formulate the new CS-SAR imaging
method based on the use of approximated observation. An L,
regularization model, together with the fast iterative thresh-
olding algorithm, will be suggested.

A. New CS-SAR Method

Restricted by the operator form, we could only calculate the
conjugate of the approximated observation. Hence, ITA, as seen
in (7), is one of the few methods that is suitable to solve this
problem. More specifically, by replacing the exact observation
H using the approximated observation G in (18), we can acquire
the following CS-SAR model:

min {|Y, - 6,G(X)0. |5 + \IXIli}  24)

where || - || is the Frobenius norm of a matrix, and ©,, and
O, are the sampling operators in azimuth and range directions,
which correspond to the general sampling operator © in (4). It
is well defined because the azimuth signal is of discrete form
and the range signal is of continuous form, and thus the sam-
pling procedure of the two types of signals are usually physi-
cally separated.?

Then, due to the linearity of G, the model (24) can still be
very fast solved by ITA, which reads in this case that

X (1)
=B (X9 + a0 (6] (Y, - 0,6 (xD)6,)07)).
(25)

In this paper, we simply select ¢ = 1 while parameters ¢, A will
be preset according to the next subsection.

Fig. 2 below shows the flowchart of algorithm (25), which
tells that ITA provides an intuitive explanation in terms of SAR
signal processing. It is seen that at each iteration, the ITA can
be decomposed into mainly three procedures: 1) the compressed
data simulation, 2) the matched filter on the residual, and 3) the
thresholding for new estimation. Physically, this means that in
every iteration of the ITA, the useful information in the residue
(not the raw data) is first extracted by MF and then added to the
current estimate to yield a new update; finally, the thresholding
procedure enforces the sparsity through regularizing the noise
and ambiguity from undersampling.

The algorithm stops when it converges or achieves the max-
imum number of iterations. For convenience of use, we list the
pseudocode of ITA (25) as Algorithm 2. We further show how
the parameters in (25) can be set adaptively.

2Although the sampling scheme on range may vary pulse by pulse, we still
use this expression, which is easily understood
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Algorithm 2: Iterative Thresholding Algorithm for
Approximate Observation-Based CS-SAR Imaging

Require: SAR raw echoes Y ., approximated observation
operator G and M, sampling operator 6,,, © .

Ensure: The recovery image X*

Initial: X(©) = 0,), 1 and max iteration 7.
1: for ¢ = 0 to 1.5 do

2: Residue: R® =Y, — Q,IG(X(%'))QT

3: MF on residue:AX®) = M(@fR(i)@Z)

4:  Thresholding: XY = E; 5 ,(X® + pAX9)
5: end for

B. Parameter Setting

There are two parameters 4+ and A in (25) that need to be set.
First, s+ controls convergence of the ITA that the inverse should
obey:

0<pu ' <|Al3. (26)
However, it is difficult to calculate ||®,,G6T||§ directly, where
operator G is included. As an alternative, we adopt the adaptive
step selection strategy in [24] as
(27)

o 0) 2 H O
N e

where AX,(;) equals to AX(") at the support of X¢~1) and
equal to zero elsewhere. It is easy to demonstrate that /1; satisfies
(27), and as reported in [24], such a choice has an additional
advantage of accelerating the algorithm.

Further, the regularization parameter A, which functions to
compromise the reconstruction precision and the sparsity of
the solutions obtained, has a substantial impact on the imaging
result. Fortunately, as a part of the L, regularization theory, the
optimally A has been resolved in [21], whenever the problem’s
sparsity is known. More precisely, assume the considered
problem has sparsity % (i.e., a k-sparsity problem), then the
optimal setting problem of parameter A* is shown to satisfy

N € (bl gy f10s b (K716 /1] (28)
where b, (x) = x+pAx, |b,(x*)|, isits kth largest component
in magnitude.

Therefore, we suggest the setting that, in the nth iteration,
Ai = [bu(x®)[, .y /pti (Migsi is independent of 11;). The sparsity
k, which determines A;, can be much more flexible to be set, say,
based on a prior upper estimation on sparsity of the target scene.

C. Computation Cost

Let us compare the computational complexity and the
memory occupation of the suggested CS-SAR imaging method
(24), as compared with the known CS-SAR model (6). The
purpose is to see how much reduction of computational cost
of the new model has been brought. In the calculation, we
have used some standard notations, which are the number of
required iteration I, the sampling rate s, the number of range

gates 7, the number of range lines 7, (n = n, x ny), the
number of samples of sent pulse u., the number of samples of
the synthetic aperture time 1, (they equal to the time bandwidth
product (TBP) in each direction), and the TBP of radar signal
U= Uy X Uy

With these notations, we can calculate the computational
complexity of the approximate observation based CS-SAR C,
and the computational complexity of the exact observation
based CS-SAR (., as follows. For C,, it includes calculations
of an inverse MF procedure and a MF procedure, which has
commonly the computational complexity of O(nlog, n), to-
gether with a decoupled thresholding operator with complexity
O(n) in a single step. Thus, the total cost is at the order
C, = O(Inlogy n). For C., it includes calculations of a single
iteration, two matrix multiplications and the thresholding proce-
dure. Since there are only few nonzero entries in H, say, nearly
us in every column, when coding it using two-dimensional
convolution, it needs at least 2uns complex multiplication.
Thus, we find that the total cost is C. = O(luns). Then, the
ratio between C. and C|, is given by r¢:

o =O< s )
logy n

Itis seen from (29) that the ratio ¢ depends linearly on the TBP
of radar signal u. In SAR applications, the « is always designed
very large (thousands even millions) to improve the reconstruc-
tion signal to noise ratio (SNR), which will bring very high com-
putational cost of the time domain reconstruction method.

The memory loads of the approximate observation-based
CS-SAR M, and the memory loads of the exact observa-
tion-based CS-SAR M, can be estimated in the subsequent
way. For M, it contains only the storage of input, output, and
several parameter matrices (i.e., azimuth matched filter, range
matched filter, and the amount of migration in RDA), which
is summed up to O(r) bytes memory occupation. For M.,
although no filters are stored, it needs additionally to store a
sensing matrix, with the number of nonzero entries of wns.
However, because the Doppler history with same range cells
share the identical pattern, we only need to store an intact
holistic pattern (the convolution kernel) for each range gate
to achieve a compression, resulting in an additional memory
occupation of 16un, bytes (a complex number occupies 16
bytes of memory), as compared with M,,. This additional cost
can be very large in spaceborne SAR systems. For example,
when 2 = 10° and n, = 10%, it requires more than 100-GB
memory to store the array. However, the memory cost of RDA
is only a few hundred megabytes in the same condition. This
will further hamper the application of time domain methods
into practice.

Finally, the required number of iteration steps is difficult to
compare analytically, but in practice, no obvious difference is
observed.

29

D. Summary

From the analysis in the previous subsections, we can see that
the suggested new model (24) and method (25) have consti-
tuted a more efficient CS-based SAR imaging method. While
preserving CS features, the new method has the following ex-
clusive advantages.



358 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 7, NO. 1, JANUARY 2014

* Lower computational cost: Due to the use of approximated
observation, the method only involves 1-D operations,
which makes the imaging process extremely efficient. It
has reduced the computational complexity of the existing
exact observation-based method significantly, as shown in
(29). Meanwhile, taking full advantages of the decoupled
structure after approximating the observation, the pro-
posed method can save the memory cost with a remarkable
amount, which is sometimes of more significance.

* Higher compatibility: Benefitting from high efficiency, MF
is currently the mainstream of SAR imaging studying and
application. Hence, other than BP-like operations used in
most existing CS-SAR algorithms, it is more natural and
practical to incorporate MF-like procedures in CS-SAR.
Fortunately, the proposed method is just one example that
combine CS and MF together. It is much easier to be under-
stood and implemented, especially when some parameters
are given by Doppler features, for example, the Doppler
center and Doppler FM rate. In particular, the new pro-
cedure can be seen as a successive iterative refinement of
the well-known MF-based method, which makes the new
method more consistent. As a result, the proposed model
requires little modification of the existing SAR imaging
algorithms, which makes the combination of MF and CS
much simpler.

All these features make the suggested new CS-SAR imaging

method more useful and efficient, and possible, in particular, to
be applied in high-dimensional SAR applications.

V. SIMULATIONS AND APPLICATIONS

In this section, several simulations and applications are pro-
vided to demonstrate the effectiveness and efficiency of the pro-
posed CS-SAR imaging method. For abbreviations, we denote
by CSRDA the CS-SAR imaging method (24) with the approxi-
mated observation G acquired from the inverse of RDA, and by
CSEO the CS-SAR method (6) with the exact observation H.

We first conduct a series of simulations to compare the per-
formance of the CSRDA method, the CSEO method, and the
traditional RDA method in terms of reconstruction ability, re-
construction quality, and reconstruction cost. Then, we apply the
CSRDA to some real SAR imaging tasks from RADARSAT-1,
which then further demonstrates the outperformance of the sug-
gested method.

The sampling scheme used in the simulations are specified as
follows. In the azimuth direction, we employed random down-
sampling, realized by selecting random rows from the raw data
Y, with sampling rate s, . In the range direction, we picked up
random samples independently on each sampled echoes in az-
imuth, with sampling rate s,.. In addition, we keep the ratio be-
tween s, and s, as 1:5.3

Table I lists the primary SAR parameters used in both simula-
tions and applications. All the experiments were conducted on a
workstation of an 8-core 2.4-GHz CPU with 32G memory. The
CSRDA was implemented in Matlab 2012a, while the CSEO
using optimized convolution was implemented in C++ with par-
allel codes and careful array operations.

3The suggested sampling strategy was designed to comprehensively compare
the reconstruction algorithms. The proposed model itself is adaptive to more
complicated sampling schemes, for example, jitter sampling in the azimuth di-
rection [12] and random demodulation [25] in the range direction.

TABLE I
PRIMARY PARAMETER OF SAR SYSTEM AND GEOMETRY
Parameter Simulation RadarSat-1
Slant range of scene center(km) 20 1016.7
Effective radar velocity(m/s) 350 7062
Beam squint angle(rad) 0 0.06
Radar center frequency(MHz) 5000 5300
Pulse repetition frequency(Hz) 175 1256.98
Range FM rate(MHz/us) 37.5 0.72135
Pulse duration(us) 2 41.75
Sampling rate(MHz) 75 32.317
(@) (V) ©
(@ © ®

Fig. 3. Reconstruction results of nine point targets simulations with different
sampling rate. From left to right are the reconstruction results of RDA, CSRDA,
and CSEOQ, respectively, and the top row is with full samples while the bottom
with 10% samples.

(a) (b) (©

(d) © ®

Fig. 4. Detailed comparison on needed least samples to reconstruct the image.
The top row is the results from CSRDA, and the bottom row is from CSEO.
From left to right are the results corresponding to the 0.65%, 0.55%, and 0.45%
sampling rate, respectively.

A. Simulations

In the simulations, the scene was taken as 180 x 180, while
the scattered coefficients were chosen with unit amplitude and
uniform random phases. The raw data were first generated in
time domain by exact slant range and then sampled with dif-
ferent rate to yield the compressed measurements. The sparsity
parameter & was kept the same for CSRDA and CSEO, and the
maximum iteration steps were set to 100 for both methods. The
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Method PSLR(R) PSLR(A) IRW(R) IRW(A)
RDA -13.32 dB -13.32 dB 15 samples 15 samples
CSRDA || -22.71 dB || -21.32 dB 8 samples 8 samples
CSEO -26.73 dB || -25.02 dB 8 samples 8 samples

Fig. 5. Contours of magnitude. The red, yellow, light blue, and blue contour lines are corresponding to the value of —3 dB, —13 dB, —23 dB, and —33 dB.

(a) Contours from RDA. (b) Contours from CSRDA. (c) Contours from CSEO.

aim of the simulations is then to compare the reconstruction
ability (RA), reconstruction quality (RQ), and reconstruction
cost (RC) of each competitive SAR imaging methods. These are
measured, respectively, by the lowest amount of measurements
by which a method can successfully reconstruct an image, the
sidelobe and resolution of the reconstructed point target, and the
computation time cost by a method to recover the image.

1) RA Comparison: A set of simulations was made where
nine targets were located at the center with intervals of six sam-
ples. We varied the sampling rate ranged from 100% to 0.6%
and added Gaussian noise with level of 20 dB. We applied
RDA, CSRDA, and CSEO to this experiment with sparsity pa-
rameter £ = 18. Some of the simulation results are shown in
Figs. 3 and 4.

It is seen from the top row of Fig. 3 that with full samples
(namely, with 100% sampling rate), all the methods RDA,
CSEO, and CSRDA can successfully recover the scene, say,
the amplitude of the target is maintained and no false target is
observed. However, the reconstruction of RDA is with serious
sidelobes, which is not observed in CSRDA and CSEO. This
shows the exclusive advantage of the sparse regularization
based CS-SAR imaging methodologies, as reported in [14].
When we reduce the sampling rate, say, 10% samples, as seen
in the bottom of Fig. 3 RDA fails to recover the scene, while
CSEO and CSRDA both can not only perfectly reconstruct the
scene but also with significantly reduced sidelobes. In this case,
no visible difference can be observed for CSEO and CSRDA.
Nevertheless, when the sampling rate continues reducing as in
Fig. 4, we found that both CSRDA and CSEO can reconstruct
the image with only 0.65% of the samples. However, CSRDA
fails with 0.55% samples while CSEO fails until the sampling
rate takes 0.45%.

All the results consistently show that benefitting from sparse
regularization, the approximate observation-based CS-SAR
method can reconstruct sparse scenes with far less samples
than Nyquist rate requires. However, caused by approximation,
it requires slightly more samples to reconstruct the scene.

2) RQ Comparison: Sparse regularization was demonstrated
in SAR and CS-SAR imaging the ability of reducing the side-
lobe and simultaneously improving the resolving ability [14].
Hence, we are interested in whether the enhancement is kept

when approximated observation is included, especially when
the effect of the accuracy of the observation is excluded. To
illustrate it, we compare the reconstruction quality of RDA,
CSRDA, and CSEO in terms of sidelobe and spatial resolu-
tion, when successful reconstruction is achieved. The sidelobe
is evaluated via the peak sidelobe ratio (PSLR), defined as the
ratio of the peak intensity of the most prominent sidelobe to
the peak intensity of the main lobe, i.e., the smaller the PSLR,
the better an algorithm. The spatial resolution is measured by
the impulse response width (IRW), defined as the width of the
main lobe of the impulse response, measured by 3 dB below
the peak value, or the minimum distance an algorithm can sep-
arate two targets, which should also be the smaller, the better.
We have performed a one-point simulation with the upsampled
factor 16 while the target is analyzed by a 16 x 16 chip cen-
tered on the peak, to yield a more detailed analysis on both the
main lobe and the sidelobe. The sampling rate is fixed (20%
for CSRDA and CSEO while 100% for RDA) to ensure a suc-
cessful reconstruction. Since the recovery condition of the ex-
panded sensing matrix is too bad, it is very difficult to achieve a
perfect reconstruction. In contrast, we are interested in the RQ
under a moderate regularization parameter; hence, the sparsity
parameter k is set at 600. Some of the simulation results are
given in Fig. 5.

Fig. 5 shows the contours of the reconstruction results, with
contour lines of —3 dB (the boundary of main lobe) and —13
dB (the PSLR of traditional MF output). The comparison intu-
itively shows that both the area of the main lobe and the PSLR
in the sidelobe reconstructed from CSRDA and CSEO are much
smaller than those reconstructed from RDA. However, the dif-
ference between CSRDA and CSEO is still inconspicuous. Fur-
ther in the table, details on the reconstruction quality are pre-
sented in azimuth and range directions. It is seen that the width
of main lobe reconstructed from RDA is 15 samples both in
range and azimuth, but for CSRDA and CSEOQ, the width is only
8 samples in the two directions. For the sidelobe, the PSLR re-
constructed from the RDA is —13.32 dB in range and azimuth
direction, which is very obvious. However, the CSRDA reduces
the PSLR to —21.3 and —22.7 dB in azimuth and range, re-
spectively, and the CSEO further reduces them to —25.0 and
—26.7 dB, a little better than CSRDA.
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Fig. 6. Superresolution ability of the proposed method. (a) Result of RDA. (b) Result of CSRDA.

We further demonstrate the enhancement of resolution by
CSRDA in another way. We add two point targets in the above
simulation, with respectively azimuth and range intervals of 12
samples from the center. We then test whether the three targets
can be separated from CSRDA. It is seen from the simulation re-
sult [Fig. 6(a)] that the reconstructed result of traditional RDA
exhibits an overlapping of the main lobe; thus, the targets are
inseparable. By using CSRDA in Fig. 6(b), one can clearly dis-
tinguish the locations of the three points, demonstrating an ob-
vious enhancement of the resolution.

All of the simulations in this subsection demonstrate that by
combining MF with sparse regularization, we can reduce the
side lobe and improve the resolution simultaneously to a great
extent. Note that these two goals have been regarded as tradeoffs
traditionally, if only MF is employed.

3) RC Comparison: Finally, we compare the CPU time takes
by CSRDA and CSEO. According to the analysis in Section IV,
the computational complexity of CSRDA and CSEO depends
on the scene size n and TBP of radar signal u. Therefore, we
generated ten examples for each set of fixed scene size n and
TBP of radar signal « in the simulation, with a constant sam-
pling rate s 10%. The average computational time in a single
iteration of the two methods was then recorded. The compar-
ison results are shown in Fig. 7.

As we can observe from Fig. 7, when w is fixed as 10°, the
CSRDA scales very well to very high-dimensional problems,
since even with p = 107, it only takes several second to finish
an iteration. The CSEO is also insensitive to dimension when %
is fixed. However, the CPU time of CSEO is consistently higher
than that of CSRDA, with a ratio around 100. On the other hand,
it is seen from Fig. 7(a) that when n is fixed to 107, the CPU
time of CSRDA is constantly 3 s, but, the CPU time of CSEO
depends linearly on u, which becomes more and more costly as
74 increases.

This RC comparison shows that the approximate observa-
tion-based CSRDA is much faster than the time-domain method
CSEO, benefited from the O(n log, n) computational cost of
MF, and the computational complexity of CSEO depends lin-
early on both the TBP of radar pulse and the scene size. There-
fore, when the w is large, i.c., 109, which is commonly in space-
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Fig. 7. CPU time of CSRDA and CSEO, where (a) w is fixed as 10°. (b) p is
fixed as 10°.
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(a) RDA(100%) (b) CSRDA(20%) (c) CSEO(20%)

(d) RDA(20%)

(e) CSRDA(5%) (f) CSEO(5%)

Fig. 8. Application on RADARSAT-1 (region of English Bay). (a) RDA with
full samples. (b) CSRDA with 20% samples. (¢) CSEO with 20% samples.
(d) RDA with 20% samples. (¢) CSRDA with 5% samples. (f) CSEO with 5%
samples.

borne cases, CSRDA is expected to accelerate the CS-SAR re-
construction more than thousands of times. This acceleration of
computational time together with the shown memory saving ca-
pacity demonstrate the superiority of the proposed method.

All the above simulations support that the suggested approxi-
mated observation-based CS-SAR method, CSRDA, is capable
of high-quality imaging under Nyquist rates and with a compa-
rable complexity as the traditional MF based imaging method.
Especially, as compared with the exact observation-based
CS-SAR imaging, CSRDA preserves the features of imaging
under Nyquist rate and reconstruction with feature enhance-
ment, while reducing the imaging complexity dramatically.
Such significant complexity reduction property makes the new
method applicable to large-scale imagery application (as will
be demonstrated in the next subsection). This is, however, at
the sacrifice of reconstruction quality or, equivalently, must
be compensated with additional measurements. Thus, the new
method provides a satisfying tradeoff between the reconstruc-
tion complexity and quality.

B. Application

We have applied the new method, CSRDA, along with RDA
and CSEOQ, to some real SAR imaging tasks. RADARSAT-1 is
a famous satellite SAR launched at 1995, and the data used in
this application were collected on June 16, 2002 with Fine Beam

2 about Vancouver region. The related key parameters of SAR
system are as in Table I.

We first applied the three methods to reconstruction of the re-
gion of English Bay, in which 6 vessels are sparsely distributed,
a very typical sparse scene. The scene was digitalized as 1024
% 512 image with azimuth resolution 9 m and range resolu-
tion 6 m. We then reconstruct the image by the three imaging
methods with sparsity X = 10000, and with varied sampling
rates from 100% to 5%. Some typical results of reconstruc-
tions are shown in Fig. 8. As expected, the application shows
a completely similar performance as that in the simulations. For
example, Fig. 8(a) exhibits that RDA can only reconstruct the
image when samples are fully adopted, but strong sidelobe is ob-
served. When sampling rate is 20%, RDA fails with obvious am-
biguities, but CSRDA and CSEO both can perfectly recover the
image, with much reduced sidelobe. Fig. 8(c) and (f) then shows
that when sampling rate is reduced to 5%, the reconstruction of
CSEO is with slightly higher precision than that of CSRDA,
though both can still recover the targets. On the other hand, as
listed in Fig. 7, CSRDA exhibits its dominant advantage in com-
putational cost as compared with CSEO. For example, the com-
putation time of reconstruction, when 20% samples are used, by
CSRDA is 1 minute, while by CSEO is about 9 hours. In addi-
tion, CSEO needs to store the sensing matrix which occupies
about 16-Gb memory, while only 100 Mb for CSRDA.

We further applied the CSRDA to the large scale imaging
problem together with RDA. However, the CSEO is not com-
pared in this experiment because the memory cost is beyond
the computational ability of our computer. The scene has a size
2048 x 2500 samples, which is of large scale but not so sparse.
CSRDA can be applied in principle because sparse regulariza-
tion, which is adopted in CS-SAR, can be used as a feature
enhanced imaging method (with suppressed side lobe and im-
proved resolution), as demonstrated in the simulations. The re-
construction results by RDA and CSRDA (with 100% sampling
rate) are shown in Fig. 9. It is seen from Fig. 9 that CSRDA
has resulted the reconstruction with improved resolution and re-
duced sidelobes, as demonstrated in the zoomed Fig. 10.

The applications above support that the suggested ap-
proximated observation based CS-SAR imaging is effective
and efficient, especially applicable to high-dimensional SAR
imaging applications. Such benefit clearly improves on the cur-
rently used exact observation based CS-SAR imaging methods.

VI. CONCLUSION

Compressed sensing (CS) has been applied to yield novel
SAR imaging methodologies under Nyquist sampling in recent
years. The resultant CS-SAR models are time domain based
and using the exact observation, which then makes it of very
high computational cost, and is difficult to be applied in high-di-
mensional applications. In this paper, we have proposed an ap-
proximated observation and frequency-domain-based CS-SAR
imaging method, with which the computational complexity can
be dramatically reduced.

The main contributions of the present work are as follows.

i) Instead of the exact observation matrix, an operator,
called the approximated observation, is constructed to
generate SAR raw data by means of inverse of any
traditional MF-based imaging procedure (like RDA).
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(®
Fig. 9. Application results on RADARSAT-1. (a) RDA with full samples.
(b) CSRDA with full samples.

Such generic construction makes the SAR imaging ap-
proximately decoupled, very fast in processing, while
naturally connecting the existing MF-based SAR imaging
algorithms.

ii) Incorporating the approximated observation into
CS-SAR framework, an efficient sparse regulariza-
tion based CS-SAR model is formulated. The new model
combines naturally CS and MF and is compatible with
most existing SAR imaging methods, which needs a little
modification of the current SAR imaging technologies.

(a) (W)

Fig. 10. Detailed comparison on the selected area with enlarged scale.
(a) RDA. (b) CSRDA.

iii) With the use of approximated observation, an iterative
thresholding algorithm is suggested for fast solution of
the new CS-SAR model, which forms a low complexity,
CS featured, new SAR imaging method.

We have tested and applied the new suggested CS-SAR
method with a series of simulations and applications. The
experiments consistently support that the new method is
capable of reconstructing sparse scenes with far fewer mea-
surements than Nyquist requires, yielding always a feature
enhanced high-quality imaging and bringing a speed-up of
reconstruction hundreds of times as compared with the exact
observation-based CS-SAR methods. Due to the fast and
feature enhancement features, the new CS-SAR method can
be accepted as an efficient CS type SAR imaging technique,
especially for high-dimensional imaging applications.

It is worthwhile, however, to remark that although signifi-
cant complexity reduction (speed-up of reconstruction) can be
brought, the use of the approximated observation requires more
samples to reconstruct a scene. Thus, how and to what extent the
approximation does affect the reconstruction deserves a further
study. Moreover, since there are many possibilities of concrete
realizations of the approximated observation, the criterion on
how to select an appropriate one deserved study.

Further, although the proposed method provides a fast imple-
mentation of CS-SAR, it does not overcome the essential lim-
itations of CS-SAR. On one hand, the sparsity of scene, which
is the prerequisite of CS, could not be strictly defined. Even in
some specific conditions that the strong targets are dominant, for
example in Fig. §, there are still many trivial targets in the dark
background. In practice, however, we assume them as zeros. As
a result, CS algorithms, either greedy or ITA, always kill such
small scatterers and affect more or less the understanding of re-
constructed image and some applications. On the other hand,
the existing subsampling strategy for CS-SAR may not ensure
a desired recovery condition so that there always requires much
more samples than what essentially requires.

All those problems are under our current research.

REFERENCES

[1] 1. G. Cumming, M. Dettwiler and Associates Staff, and F. H. Wong,
Digital Signal Processing of Synthetic Aperture Radar Data: Algo-
rithms and Implementation. Norwood, MA, USA: Artech House,
2004.

[2] E. J. Candes, “Compressive sampling,” in Proc. Int. Congr. Math.,
2006, pp. 1433-1452.

[3] R. G. Baraniuk, “Compressive sensing,” [EEE Signal Process. Mag.,
vol. 24, no. 4, pp. 118-121, 2007.



[4] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol.
52, no. 4, pp. 1289-1306, 2006.

[5] A. C. Gurbuz, J. H. McClellan, and W. R. Scott, Jr., “Compressive
sensing for subsurface imaging using ground penetrating radar,” Signal
Process., vol. 89, no. 10, pp. 1959-1972, 2009.

[6] M. A.Herman and T. Strohmer, “High-resolution radar via compressed
sensing,” IEEE Trans. Signal Process., vol. 57, no. 6, pp. 2275-2284,
20009.

[7] J. H. G. Ender, “On compressive sensing applied to radar,” Signal
Process., vol. 90, no. 5, pp. 1402—1414, 2010.

[8] L. C. Potter, E. Ertin, J. T. Parker, and M. Cetin, “Sparsity and
compressed sensing in radar imaging,” Proc. IEEE, vol. 98, no. 6, pp.
1006-1020, 2010.

[9] S.Bhattacharya, T. Blumensath, B. Mulgrew, and M. Davies, “Fast en-
coding of synthetic aperture radar raw data using compressed sensing,”
in I[EEE/SP 14th Workshop Statist. Signal Process., 2007, pp. 448—-452.

[10] G. Rilling, M. Davies, and B. Mulgrew, “Compressed sensing based
compression of SAR raw data,” in Proc. Signal Process. Adapt. Sparse
Structured Represent. (SPARS’09), 2009.

[11] M. Tello Alonso, P. Lopez-Dekker, and J. J. Mallorqui, “A novel
strategy for radar imaging based on compressive sensing,” [EEE
Trans. Geosci. Remote Sens., vol. 48, no. 12, pp. 42854295, 2010.

[12] V.M. Patel, G. R. Easley, D. M. Healy, and R. Chellappa, “Compressed
synthetic aperture radar,” IEEE J. Sel. Topics Signal Process., vol. 4,
no. 2, pp. 244-254, 2010.

[13] J. S. Zeng, J. Fang, and Z. B. Xu, “Sparse SAR based on L, ;, regu-
larization,” Sci. China Inf. Sci., vol. 55, no. 8, pp. 1755-1775, 2012.

[14] M. Cetin and W. C. Karl, “Feature-enhanced synthetic aperture radar
image formation based on nonquadratic regularization,” IEEE Trans.
Image Process., vol. 10, no. 4, pp. 623-631, 2001.

[15] A. S. Khwaja, L. Ferro-Famil, and E. Pottier, “SAR raw data simula-
tion using high precision focusing methods,” in Proc. Eur. Radar Conf.
(EuRAD), 2005, pp. 33-36.

[16] G. Franceschetti, R. Guida, A. Todice, D. Riccio, and G. Ruello, “Ef-
ficient simulation of hybrid stripmap/spotlight SAR raw signals from
extended scenes,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 11,
pp. 2385-2396, 2004.

[17] C. Wu, K. Y. Liu, and M. Jin, “Modeling and a correlation algorithm
for spaceborne SAR signals,” IEEE Trans. Aerosp. Electron. Syst., no.
5, pp. 563-575, 1982.

[18] S. J. Wei, X. L. Zhang, J. Shi, and G. Xiang, “Sparse reconstruction
for SAR imaging based on compressed sensing,” Progr. Electromagn.
Res., vol. 109, pp. 63-81, 2010.

[19] E.J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles:
Exact signal reconstruction from highly incomplete frequency infor-
mation,” IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489-509, 2006.

[20] 1. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint,”
Commun. Pure Appl. Math., vol. 57, no. 11, pp. 1413-1457, 2004.

[21] Z.B.Xu, X. Y. Chang, F. M. Xu, and H. Zhang, *“ L1 /2 regularization:
A thresholding representation theory and a fast solver,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 23, no. 7, pp. 1013—1027, 2012.

[22] T.Blumensath and M. E. Davies, “Iterative hard thresholding for com-
pressed sensing,” Appl. Comput. Harmon. Anal., vol. 27, no. 3, pp.
265-274, 2009.

[23] C. Wu, “A digital system to produce imagery from SAR data,” Syst.
Design Driven by Sensors, vol. 1, 1976.

[24] T. Blumensath and M. E. Davies, “Normalized iterative hard thresh-
olding: Guaranteed stability and performance,” IEEE J. Sel. Topics
Signal Process., vol. 4, no. 2, pp. 298-309, 2010.

[25] J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and R. G. Bara-
niuk, “Beyond Nyquist: Efficient sampling of sparse bandlimited sig-
nals,” IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 520-544, 2010.

Jian Fang (S’12) was born in Jiangsu, China, in
1986. He received the B.Sc. degree in mathematics
from Nanjing Normal University, Nanjing, China, in
2008.

He is currently working towards the Ph.D. degree
with the School of Mathematics and Statistics, Xi’an
Jiaotong University, Xi’an, China. His research inter-
ests include sparse modeling and synthetic aperture
radar imaging.

FANG et al.: FAST COMPRESSED SENSING SAR IMAGING BASED ON APPROXIMATED OBSERVATION

~
»>

363

Zongben Xu received the Ph.D. degree in mathe-
matics from Xi’an Jiaotong University, Xi’an, China,
in 1987.

He currently serves as a Vice-President with
Xi’an Jiaotong University, the Academician of the
Chinese Academy of Sciences, the Chief Scientist
of the National Basic Research Program of China
(973 Project), and the Director of the Institute for
Information and System Sciences of the University.
His current research interests include nonlinear
functional analysis and intelligent information

processing.

Dr. Xu was a recipient of the National Natural Science Award of China in

2007 and was a winner of the CSIAM Su Buchin Applied Mathematics Prize in
2008. He delivered a talk at the International Congress of Mathematicians 2010.

Bingchen Zhang received the M.S. degree from the
Institute of Electronics of Chinese Academy of Sci-
ence, Beijing, China, in 1999.

He currently serves as a scientist in the Institute of
Electronics, Chinese Academy of Sciences, Beijing,
China. His research interests consist of signal and
information processing, remote sensing technology,
and sparse signal processing.

Wen Hong (M’03) was born in Shanxi, China, in
1968. She received the M.S. degree from North-
western Polytechnical University, Xi’an, China, in
1993 and the Ph.D. degree from the Beijing Uni-
versity of Aeronautics and Astronautics (BUAA),
Beijing, China, in 1997.

She was formerly a Faculty Member in signal and
information processing with the Department of Elec-
trical Engineering, BUAA. She worked as a Guest
Scientist for one year with the German Aerospace
Center (DLR), Wessling, Germany. Since 2002, she

has been with the National Key Laboratory of Microwave Imaging Technology,
Institute of Electronics, Chinese Academy of Sciences, Beijing, China, as a Sci-
entist and a Supervisor of the graduate student program. Her research interests
include synthetic aperture radar imaging and its applications.

Yirong Wu (M’00) received the Ms.D. degree from
the Beijing Institute of Technology, Beijing, China,
in 1988 and the Ph.D. degree from the Institute of
Electronics, Chinese Academy of Sciences (IECAS),
Beijing, China, in 2001.

Since 1988, he has been with IECAS, where he
is currently the Director. He has over 20 years of
experience in remote sensing processing system
design. His current research interests are microwave
imaging, signal and information procession, and
related applications.



