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a b s t r a c t

The existence of multiple wireless networks with different radio access technologies and
protocols makes the radio environment heterogeneous. In order to provide the best Quality
of Service available from the active networks, and satisfy the concept of always best
connected, one can take advantage of this heterogeneity by developing multi-mode
terminals able to smartly switch from one interface to another. This switching process,
known as vertical handover (VHO), requires some relevant metrics to be measured by the
terminal in order to decide whether to trigger a VHO or not. Using multiple antennas, we
propose to track the number of active sources and employ the results in CSMA/CA
networks for VHO. The proposed algorithm is developed using a Markov chain model for
sources enumeration at any given time. We also use a three state Markov model for CSMA/
CA networks and show how this algorithm can be applied to recursively obtain two
informative metrics about the channel state, namely the channel occupancy rate and the
collision rate. Numerical simulations confirm that the proposed algorithm performs well
for practical SNR values. The proposed algorithm relies on a physical layer sensing and
requires no connection to the access point, no synchronization, no signal demodulation
and no frame decoding. This particularity ensures a seamless handover with a time/
energy economy.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Wireless communication standards are facing a prolifera-
tion leading to the coexistence of different networks belong-
ing to different administrative domains. Some of these
networks operate in different frequency bands, like LTE,
WiMAX, 3G, etc., while some of them operate in the same
band like WiFi and Bluetooth. In parallel to this, there is also
an emerging trend to provide ubiquitous wireless access to
mobile terminals while maintaining the Quality of Service
All rights reserved.

agne.eu
(QoS) requirements for upper layers applications. In order to
make such an operation possible, and to take advantage of
this coexistence, the terminal needs to be smart enough to
sense the surrounding environment and switch cognitively
from one standard to another, e.g., if the first one cannot
satisfy the required QoS. This switching process is known
as vertical handover (VHO). The VHO is possible only if the
mobile terminal could sense its environment and accordingly/
cognitively reconfigure its communication parameters to
better adapt with the channel conditions [1]. This operation
includes two stages: sense and decide. This paper deals only
with metrics estimation (part of the sensing task). After
verifying that the link quality in terms of Signal to Noise Ratio
meets its requirements, prior to perform a vertical handover,
the terminal has to evaluate some relevant metrics that are
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Fig. 1. Markov chain model for adaptive source enumeration.
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informative about the available networks' QoS. Indeed, one
should note that the QoS metrics are only complementary to
the classical link quality based on power strength.

In the context of vertical handover, only the passive
estimation is relevant, since the terminal seeks to know a
priori if a network satisfies its QoS needs without wasting
time and power to get connected to this network [2].
To satisfy those conditions, the algorithm proposed here
relies on a physical layer sensing and requires no connec-
tion to the access point, no synchronization, no signal
demodulation and no frame (data packet) decoding.

Our networks of interest are based on a Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA) pro-
tocol like WiFi (IEEE 802.11). It has been highlighted in
[3,4] that the usage of the channel bandwidth in a CSMA/
CA system can be approximated by the ratio between the
time in which the channel status is busy according to the
NAV (Network Allocation Vector) settings and the consid-
ered time interval. The higher the traffic, the larger the
NAV busy occupation, and vice versa. Once we read a NAV
value during a certain time window, the available band-
width and access delay can be estimated [5]. The main
drawback of this method is that it requires the station to
be connected to the access point in order to obtain the
NAV information from the header, this may increase the
decision time if many standards or access points (APs) are
detected. An alternative technique has been presented
in [6,7] for the estimation of the channel occupancy rate.
This technique relies on a physical layer sensing, and thus
presents the advantage of time economy since it requires
no synchronization and no association to the AP. The
authors succeeded in showing the relevance of this phy-
sical layer metric by performing experimental measure-
ment in [8] under different scenarios. Unfortunately, this
algorithm requires the knowledge of the noise variance
and does not give any information about the collision rate
which is a complementary metric to the channel occu-
pancy rate. In [9,10] it has been shown that the collision
rate depends on the number of users connected to an
access point, and in [11] it is stated that the mean of the
MAC (Media Access Control) delay associated with a
transmission by a particular source is increasing exponen-
tially versus the collision probability. Thus, with a higher
collision rate, a lower QoS is available. To the best of our
knowledge, the only passive technique for collision detec-
tion has been studied in [7,8], in contrast to the MAC layer
based technique proposed in [12]. Unfortunately, this
method needs the knowledge of the edges of the frame
(the start and end points) in order to apply any informa-
tion theoretic criterion to test if a collision has occurred.
Since a cognitive receiver does not know the exact times
when the frame starts and ends, this technique cannot be
directly applied and requires the edges to be estimated as
additional unknown parameters.

From a physical layer perspective, the problem of esti-
mating the channel occupancy rate and the collision rate can
be viewed as a source enumeration problem. In fact, the data
frames of each user can be viewed as a signal emitted by one
source, and the collided frames as a mixture of two or more
sources. Rank tracking is a classical model order selection
problem that arises in a variety of important statistical signal
and array processing, however it is rarely addressed in the
literature [13–16]. In this paper, to achieve this recursive
estimation, we propose a new algorithm based on a Markov
chain model. Assuming that a maximum ofM sources can be
present at any observation time, we model the system by an
Mþ1 states chain (see Fig. 1, M states for the sources plus
one for the case that no source is active). Our proposed
algorithm estimates the number of sources, recursively, in
four steps and is an extension of the proposed one in [17]
dedicated to spectrum sensing.

The application to CSMA/CA based networks is then
straightforward. In several papers, such networks have
been modeled by a Markov process and their performance
have been studied [18–20]. In most of these papers, a two
state Markov chain is used (good state and bad state). In
our model, we employ a chain with three states: no
transmission, one source, and collision. The objective of
the channel sensing is to detect these states. After a period
of time, we can easily estimate the channel occupancy rate
as the ratio of the total time intervals where the channel is
declared as busy (the number of sources is not zero) to the
total observation time. In addition, the collision rate is
estimated as the ratio of the number of frames detected to
be involved in a collision to the total number of frames
detected during the observation time. One should note that,
we do not aim to estimate the total number of users or
competing stations [10,21–23], but only to detect if the
sensed frame is a result of a collision or not and than deduce
the collision rate.

The remainder of the paper is organized as follows: in
Section 2, we formulate the problem and present the Markov
model for tracking the number of sources. In Section 3, we
propose a four step algorithm based on the Markov model
for the number of source tracking, the algorithm is presented
for a general case and can be used in any other application. In
Section 4, we explain how the proposed algorithm is used for
a WiFi network. In Section 5.1, we evaluate the performance
of the proposed algorithm on the estimation of the channel
occupancy rate and the collision rate for a WiFi network.
Finally, Section 6 concludes the paper.

Throughout this paper we denote E½�� for mathematical
expectation, ð�ÞT for matrix transposition, ð�ÞH for complex
conjugate transposition, J � J for Frobenius norm, j � j for
absolute value, � for the element-wise vector product, IN
for N�N identity matrix, ← for overwriting, and diagð�Þ for
diagonal matrix with entries given by elements of ð�Þ.

2. Model

Let us consider a receiver equipped with N antennas,
and xðkÞ ¼ ½x1ðkÞ;…; xNðkÞ�T denote the received signal at
the time instant k. The signal xðkÞ is a mixture of maximum
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KoN independent signals as follows:

xðkÞ ¼HðkÞsðkÞþwðkÞ; ð1Þ
where HðkÞACN�K is the channel matrix, sðkÞACK�1 is the
transmitted data vector and wðkÞACN�1 is a zero mean
additive white Gaussian noise with a variance of s2ðkÞ
which is independent of sðkÞ.

The sources are rising and vanishing upon the time. As
a result, the number of active sources K varies with time k
and needs to be estimated iteratively. The classical rank
estimation methods are computationally expensive. Thus,
we here propose a new approach using a Markov model.
Since, it is very unlikely that more than one source vanish
or appear together at a given time instance, we can use the
Markov chain in Fig. 1, where states/hypothesis are defined
as follows:

H0 Only noise is observed;
H1 One station is transmitting;
H2 Two stations are transmitting;
⋮ ⋮
HM M stations are transmitting;

8>>>>>><>>>>>>:
ð2Þ

where M is known and denotes the maximum number of
simultaneously active sources. We assume that KrMoN.
This assumption means that the number of simultaneously
transmitting stations M is less than the number of anten-
nas. This is not to assume that the whole number of
stations connected to the access point is less than the
number of antennas. This assumption is generally realistic
for many applications such as in IEEE 802.11 as long as we
have more than two antennas. For example in IEEE 802.11,
the Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA) protocol is used to minimize the collisions, i.e.,
the collision phenomena occur rarely and amongst a very
small number of stations, practically two or three but
it is very unlikely that more stations are simultaneously
involved in one collision. Without a priori knowledge
about M, one can set M to N�1. In Fig. 1, the transition
probabilities αi for i¼ 0;…;M�1 represent the probability
that the channel is occupied by iþ1 sources given that it
was occupied by i sources in the previous sensing time. We
consider the number of collisions as the number of frames/
data packet issued from a collision of two or more sources.
The probabilities βi for i¼ 1;…;M are the probabilities that
i�1 sources are present at the present sensing time given
that i sources were present in the previous sensing time.
We must note that at a given time instant we have multi-
hypothesis composite test problem with some a priori
estimates for the unknown parameters.

In our model, the mobile stations signals are assumed
as zero-mean, white, independent and circularly symme-
trical complex Gaussian random variables with variances
of fς2i ðkÞg

K
i ¼ 1 at time k. These variances depend on the

power of transmitters, the channel gains which are
unknown and vary with time. We assume that these
variances are almost constant or change smoothly from
each sensing time to the next. Thus, the distribution of the
random vector process xðkÞ is characterized by its covar-
iance matrix at time k, shown by

RðkÞ ¼ E½xðkÞxHðkÞ�: ð3Þ
Note that it is implicitly assumed that the process xðkÞ is
non-stationary. The non-stationarity is for two different
reasons. The first one is that the number of the compo-
nents of sðkÞ changes with time as sources vanish or arise.
The second reason is that the channel responses HðkÞ and
fς2i ðkÞg

K
i ¼ 1 vary with time. However, we assume that HðkÞ

and fς2i ðkÞg
K
i ¼ 1 vary very smoothly with time. In other

words, our assumption is that only the changes in the
number of sources create sudden changes in the eigen-
structure of the unknown matrix RðkÞ. The eigenvalue
decomposition (EVD) of the matrix RðkÞ can be written as

RðkÞ ¼UðkÞΛðkÞUHðkÞ; ð4Þ

UðkÞUHðkÞ ¼ IN : ð5Þ
where ΛðkÞ ¼ diag½λ1ðkÞ; λ2ðkÞ;…; λNðkÞ�, UðkÞ ¼ ½u1ðkÞ;u2ðkÞ;
…;uNðkÞ�, λiðkÞ's are the eigenvalues and uiðkÞ's are the
orthonormal eigenvectors. Without loss of generality, it is
convenient to assume λ1ðkÞZλ2ðkÞZ⋯ZλNðkÞZ0.

Under Hypothesis Hm, the autocorrelation matrix
expressed in (3) can be written as

RðkÞ ¼HðkÞ

ς21ðkÞ 0 ⋯ 0
0 ς22ðkÞ ⋯ 0
⋮ ⋱ ⋱ 0
0 ⋯ ς2mðkÞ

266664
377775HHðkÞþs2ðkÞIN : ð6Þ

Since the number of sources can change with time, the
above EVD structure is also subject to modification and
thus needs to be tracked. A simple but computationally
exhaustive form of subspace tracking consists of perform-
ing the estimation of the all EVD parameters for every new
observation xðkÞ. To reduce computational complexity,
we are interested in algorithms that can estimate ΛðkÞ
and UðkÞ adaptively using the previous estimates of
Λðk�1Þ and Uðk�1Þ. These subspace algorithms seek to
satisfy the following equation:

bUðkÞbΛðkÞbUHðkÞ ¼ ð1�εÞbUðk�1ÞbΛðk�1ÞbUHðk�1ÞþεxðkÞxHðkÞ
ð7Þ

where the constant εAð0;1Þ is called the forgetting factor
and determines the effective length of the exponential
window ð2�εÞ=ε [24]. A larger value for εo1 results in a
better tracking capability in an environment where HðkÞ and
fς2i ðkÞg

K
i ¼ 1 vary faster with time (e.g., for larger speeds).

3. Proposed algorithm

In our algorithm, to update the EVD, we propose to use
the PROTEUS-1 algorithm introduced by Champagne et al.
[25]. There are several other alternative algorithms that
could be used. This algorithm is computationally efficient
using a CORDIC (COordinate Rotation DIgital Computer)
processor, as it uses only plane rotations for updating the
eigenvectors and directly provides the set of orthonormal
eigenvectors, which makes it a well suited subspace tracking
algorithm for our multi-hypothesis problem which deals
with non-stationary data.

In (6), the number of active sources is the number of
eigenvalues of RðkÞ which are larger than s2ðkÞ and is in
fact a function of the time k and needs to be determined.
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We propose the following four step soft enumeration
algorithm to determine the probability of each hypothesis
in (2), recursively.

Step 0: Initialization step. We define Pm
kjk�1 as the a priori

probability of having m active sources at time k:

Pm
kjk�1 ¼ P½Hm at time kjΩðk�1Þ� ð8Þ

where the hypothesis Hm denotes the event that m sources
are active and Ωðk�1Þ denotes the available information and
observation at time instant k�1. At the instant k¼0, in the
absence of any knowledge, we initialize the a priori prob-
abilities as Pm

0j�1 ¼ 1=ðMþ1Þ; 8m¼ 0;…;M. The EVD of the
received signal bUð0Þ and bΛð0Þ is initialized randomly.

Step 1: Sense and Update. Observe xðkÞ and perform the
preprocessing and normalization steps in PROTEUS-1 [25]
as follows:
1.
 Projection: yðkÞ ¼ bUHðk�1ÞxðkÞ;

2.
 Mapping the pair ðyðkÞ; bUðk�1ÞÞ:

yðkÞ←DHðkÞyðkÞ; bUðkÞ←bUðk�1ÞDðkÞ:
using DðkÞ ¼ diagðy1ðkÞ=jy1ðkÞj;⋯; y1ðkÞ=jynðkÞjÞ where
yiðkÞ denotes the ith entry of the vector yðkÞ. This
mapping removes the phase of elements of yðkÞ and
incorporates them into the corresponding column ofbUðkÞ. In this way, the vector yðkÞ becomes real and the
new pair represents the same EVD.
3.
 Reordering/sorting: Find the permutation matrix Π
which reorders the entries of yðkÞ in the decreasing
order and

yðkÞ←ΠTyðkÞ; bUðkÞ←bUðkÞΠ; bΛðkÞ←ΠT bΛðk�1ÞΠ:
5.
 bλ iðkÞ←ð1�εÞbλ iðkÞþεy2i ðkÞ
1 We observed that as the number of sources changes, a leakage from
the signal subspace affects the noise subspace and results in increased
error in the estimations of the noise power.
where GijðθÞ is the well-known plane or Givens rotation
matrix defined by

GijðθÞ ¼

Ii�1

cos ðθÞ ⋯ sin ðθÞ
⋮ Ij� i�1 ⋮

� sin ðθÞ ⋯ cos ðθÞ
IN� j

26666664

37777775: ð9Þ

The computational cost of this step, as stated in [25], is
equal to 6N3þ15:5N2þðνþ7:5ÞN flops, where ν is used as
a common flop count for the square root operation.

Step 2: Calculation of Log-Likelihood functions. In this
step, we calculate the Log-Likelihood functions using the
observed samples at time k. Under hypothesis Hm, we
estimate the noise variance by

bs2
m kð Þ ¼ 1

N�m
∑
N

i ¼ mþ1

bλ i kð Þ under Hm: ð10Þ

This expression represents the maximum likelihood (ML)
estimator of the noise variance only for a rectangular window,
whereas we are using an exponential window. Our simulation
results reveal that as the number of sources changes with
time the estimate of noise variance will vary significantly.1

Thus, we used the following alternative estimator under H0:

bs2
0ðkÞ ¼ bλNðkÞ under H0: ð11Þ

This estimator is more robust than bs2
0ðkÞ ¼ ð1=NÞ∑N

i ¼ 1
bλ iðkÞ to

the variation of number and power of sources and is more
suitable for environments with fast changing dynamics. We
must note that bλ iðkÞ's are eigenvalues of (7) and are biased
estimators for the true eigenvalues of RðkÞ. In fact, the bias
using the following estimator bs2

0ðkÞ ¼ bλNðkÞ is less significant
than the one when using bs2

0ðkÞ ¼ ð1=NÞ∑N
i ¼ 1

bλ iðkÞ. Obviously
some performance gain can be obtained using more elaborate
estimators such as the recently proposed ones in [26]. Given
these estimates the Log-Likelihood functions for mZ1 are
estimated as follows:

Lðx kð Þ Hmj Þ ¼ log
ε

m

� �
� N�mð Þlog πbs2

m kð Þ
� �

� 1bs2
mðkÞ

Jx kð Þ�Vm kð ÞVmðkÞHx kð ÞJ2

� ∑
m

j ¼ 1
log πbλ j kð Þ
� �

� 1bλ jðkÞjuH
j kð Þx kð Þj2

 !
; ð12Þ

and under H0 as

Lðx kð Þ H0j Þ ¼ �N log πbs2
0 kð Þ

� �
� 1bs2

0ðkÞ
Jx kð ÞJ2; ð13Þ

where VmðkÞ ¼ ½umþ1ðkÞ umþ2ðkÞ ⋯ uNðkÞ�: The term log ðε=mÞ is
an additional penalty function introduced to avoid over-
estimation. The reason is that the larger values of m involve
more unknown parameters which result in a larger bias in
the estimation of the Log-Likelihood functions. The function
logðε=mÞ is obtained in an empirical manner comforted by
simulations and may be justified using the asymptotic
distribution of the eigenvalues [24]. The overall computa-
tional cost of this step is equal to N2þ2NþMðN2þ
Nþ4Þþ9.

Step 3: Updating posterior probabilities. In this step, we
combine the priori probabilities Pm

kjk�1 defined in (8), and
the Log-Likelihood functions in (12) and (13), to obtain the
posterior probabilities defined as

Pm
kjk ¼ P½Hm at time kjΩðkÞ�: ð14Þ

In fact, Pm
kjk and Pm

kjk�1 denote the estimated probabilities of
presence of m sources at the sensing time k, respectively
with or without the use of the current available vector
of observation xðkÞ. Let Pkjk ¼ ½P0

kjk;…; PM
kjk�T and Pkjk�1 ¼

½P0
kjk�1;…; PM

kjk�1�T denote the vectors containing the Mþ1
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posterior and a priori probabilities, respectively, and

FðkÞ ¼ ½expðLðxðkÞjH0ÞÞ;…; expðLðxðkÞjHMÞÞ�T ð15Þ
be the vector containing the Mþ1 likelihood values where
(mþ1)th element of FðkÞ represents an estimate of
f ðxðkÞjHmÞ. By exploiting the Bayes rule, we obtain posterior
probability vector as

Pkjk ¼
1

FT ðkÞPkjk�1
F kð Þ � Pkjk�1: ð16Þ

A decision can be made on the rank, according to the most
probable hypothesis, i.e.bK ¼ arg max

m
fP0

kjk;…; PM
kjkg: ð17Þ

The computational cost of this step is equal to 3ðMþ1Þ.
Step 4: Prediction of priori probabilities. A prediction of

the priori probabilities Pm
kþ1jk for the next sensing time is

needed to compute the posterior probabilities expressed
in (16). We use the Markov model illustrated in Fig. 1 to
predict these probabilities as

Pkþ1jk ¼ TPkjk ð18Þ
where the transition matrix of the Markov chain T as
shown in Fig. 1 is given by

T¼

1�α0 α0 0 ⋯ 0
β1 1�α1�β1 α1 ⋱ ⋮
0 β2 1�α2�β2 ⋱ 0
⋮ ⋱ ⋱ ⋱ αM�1

0 ⋯ 0 βM 1�βM

26666664

37777775: ð19Þ

A flow-chart of this algorithm is presented in Fig. 2 and
Algorithm 1.
Algorithm 1. Adaptive source enumeration.
The computational cost of this last step is equal to
2
ðMþ1Þ , thus, the overall computational cost of the pro-

posed algorithm is equal to the sum of the CCs of each
step, that is 6N3þðMþ16:5ÞN2þðMþ9:5þνÞNþ7Mþ12.

4. Application to CSMA/CA based wireless networks

The proposed algorithm in the previous section gives
an estimate of the number of active sources at each
sensing time, recursively. For the context of metric estima-
tion, the soft information in Pkþ1jk can be used to more
accurately extract other information. In particular, the
values 1�P0

kjk and 1�P0
kjk�P1

kjk represent instantaneous
estimates of the probabilities that the system is occupied
and has a collision, respectively. Thus, averaging these
values over time we can estimate the occupancy and
collision rates of samples.

We here apply this proposed algorithm to estimate the
channel occupancy rate and the collision rate of a WiFi
access point. The IEEE 802.11 (WiFi) communication relies
on the protocol Carrier Sense Multiple Access with Colli-
sion Avoidance (CSMA/CA). CSMA/CA is a multiple access
method, any node which wishes to transmit data must
first listen to the channel for a predetermined amount of
time and determine whether or not the channel is used by
another node. Only if the channel is identified to be “idle,”
then the node is permitted to begin the transmission
process. Otherwise if the channel is sensed as “busy,” the
node defers its transmission and waits for a random period
of time called “backoff”. There are Inter Frame Spacing
(IFS) time intervals between any two consecutive frames
during which the observed signal consists of only noise
samples. Whereas during data frames, we have signal plus
noise. During transmission of data frames, the observed
samples can be from one source plus noise or from two (or
more) sources in the case of a collision. Thus from a
physical layer point of view, the WiFi communication can
be modeled as a Markov chain with three states:

H0 Only noise is observed ðInterframe spacingÞ;
H1 Only one mobile station is transmitting;
H2 Two or more stations are transmitting ðCollisionÞ:

8><>:
ð20Þ

Fig. 2. Flow chart of the proposed algorithm.
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The Markov chain associated is illustrated in Fig. 3, where
the transition probability 1�α0Að0;1Þ represents the
probability of idle channel when the channel was idle in
the previous sensing time, 1�α1�β1Að0;1Þ represents the
probability of busy channel when the channel was busy in
the previous sensing time. Finally 1�β2Að0;1Þ represents
the probability of a collision when a collision was detected
in the previous time. The transition matrix of the chain is

T¼
1�α0 β1 0
α0 1�α1�β1 β2
0 α1 1�β2

264
375: ð21Þ

We assume that the cognitive device is equipped with
more than two antennas N42. In (21) we ignored the
transition probability from H0 to H2 (the true value is not
zero as two stations may incidently start to transmit at the
exact same time). However, the matrix in (21) allows to
detect changes from H0 to H2 in two time steps; the
probability vector Pkjk first indicates that the “one active
source” state is the most likely state and shortly after
moves to the “two active sources”. Obviously, using a non-
zero probability for that entry in (21) results in improve-
ment of detection of such unlikely events at the expense
of degradation for more likely events. Note that the
algorithm remains unchanged if we use a non-zero entry
Fig. 3. Markov model for the PHY layer of a WiFi channel.

Fig. 4. Example for tracking capacity of the algorithm: (a) magnitude of the obs
for the probabilities of transitions between H0 and H2. We
must also note that once in H2, the users will backoff for
some time and therefore the transition matrix can be
modified in order to reflect the behavior of backoff timers.

5. Simulations

5.1. Tracking capability of the proposed algorithm

Simulations have been assessed on WiFi 802.11n sig-
nals. WiFi signals are OFDM signals with a total number
of 64 sub-carriers and a cyclic prefix of length 16. The
receiver is assumed to be equipped with N¼4 antennas.
The channel HðkÞ is a set of complex numbers randomly
chosen according to a Gaussian law with zero mean and a
unitary variance. The channel is also assumed to be a slow
fading channel. The SNR is defined by frame and for the ith
source it is set as SNRi ¼ ς2i =s

2. The forgetting factor used
for the PROTEUS-1 algorithm is ε¼ 0:05. The moments
of the Markov chain illustrated in Fig. 3 are as follows:
α0 ¼ 10�4, α1 ¼ α0=2, β1 ¼ 10α0 and β2 ¼ 40β1. These prob-
abilities represent the dynamic of users and have been
determined empirically by simulations.

The matrices bUð0Þ and bΛð0Þ are initialized by first obser-
ving 10 samples on the channel of interest and computing
the true EVD of the set of observation. In Fig. 4, we plot an
example of a sensed communication, the observation is
made of two frames: the first frame is a product of a collision
between a frame with an observed SNR¼15 dB at the
cognitive observer, the second frame is emitted by a single
source observed with a SNR¼10 dB. Fig. 4a represents
the magnitude of the observed signal. Fig. 4b represents
the posteriori probabilities of being under each hypothesis.
Finally, Fig. 4c represents the true and estimated rank using
erved signal, (b) a posteriori probabilities and (c) real and estimated rank.
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the proposed algorithm. The decision on the rank (illustrated
in the bottom) is made according to the hypothesis present-
ing the maximum posteriori probability. We observe that
under these scenarios, our algorithm has a good tracking
capability. The overestimation that appears in the beginning
is negligible and may be due to the fact that the algorithm
needs time to converge. Some delays during the transition
from a rank to another appear, for example, the transition
from the rank one to two in the figure occurs with a delay of
22 samples, and from the rank two to one occurs after 24
samples. These delays are proportional to the eigenvalue
tracking algorithm exponential window 1=ε¼ 1

0:05¼ 20. Thus
1=ε must be smaller than the coherence time of the channel.

Note that the delays from the state “two sources” to
“one source” and vice versa have no impact on the
performance of the proposed estimator in Section 5.2.
Indeed, the length of the collision does not matter to us, it
is the number of collision that is important in our case.
However, the delays occurring when transiting from the
states “one source” and “noise” are important because they
determine the length of the frame, parameter that we are
going to use when computing the channel occupancy rate.

In Fig. 5, we have conducted simulation in the same
scenario as in Fig. 4 but using a transition probability α0,
100 times greater. We remark that the tracking capacity of
the proposed algorithm is affected by this action, and that
the algorithm is sensitive to the choice of the transition
matrix T.

Finally, an extended Markov chain of four states is used to
estimate a number of sources up to three. The Markov chain
associated to this simulation is detailed in Fig. 6. The receiver
Fig. 5. Example for tracking capacity of the algorithm when changing the trans
of Fig. 4. (a) magnitude of the observed signal, (b) a posteriori probabilities and
has 4 antennas. The transition probabilities are chosen as
follows: α0 ¼ 10�4, α1 ¼ α0=2, α2 ¼ α1=2, β1 ¼ 10α0, β2 ¼
40β1, β3 ¼ 10β2. The associated performance of the algorithm
is plotted in Fig. 7. One can clearly see that the algorithm still
behaves well as for the three state Markov model associated
to the two sources collision case, using the same number of
antennas. In conclusion, the proposed algorithm can be used
whatever is the length of the Markov chain.

5.2. Application to CSMA/CA based networks

As stated previously the channel occupancy rate noted
as Cor is defined as being the ratio between the amount of
time where the channel is considered as being busy and
the length of the observation window. According to our
model illustrated in Fig. 3, the Cor is processed as follows:

Cor ¼
1
Ns

∑
Ns

k ¼ 1
P1
kjkþP2

kjk
� �

¼ 1� 1
Ns

∑
Ns

k ¼ 1
P0
kjk; ð22Þ

where Ns is the length of the observation window.
The collision rate is defined as the number of frame

issued of a collision (rank41) divided by the total number
of frames on the observation window, that is

Rcol ¼
Number of collided frames
Total number of frames

: ð23Þ

Note that the temporal average of P2
kjk gives the collided

rate of signal samples. However, the reason that we use
(23) instead of the average is that P2

kjk in the MAC layer, the
required metric of interest is the collision rate of the
frames and not that of samples.
ition matrix elements such that α0 is 100 times greater than the scenario
(c) true and estimated rank.
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As the algorithm proposed in [8], the proposed approach
suffers in some cases of fluctuations. These fluctuations
mainly appear during the transition from a hypothesis to
another one, and their duration is proportional to the
forgetting factor ε. Specially at high SNRs, as the contrast
between the eigenvalues become bigger, we noticed that
these fluctuations are mainly an overestimation that rapidly
vanishes with time. To overcome this problem, we utilize the
smoothing algorithm proposed in [8] which has been tested
experimentally on real WiFi signals and shown its efficiency.
This smoothing algorithm relies on the fact that in a CSMA/
CA algorithm the smallest silence period is an SIFS (Short
InterFrame Spacing) and no other frame has a length smaller
than it. Hence, if our algorithm meets a frame of size less
than the size of an SIFS, it will automatically affect the
number of sources of the frame that comes after it. Once, this
smoothing operated the channel occupancy rate and the
collision rate that are computed thanks to (22) and (23).

To evaluate the performance of the proposed method
versus the SNR, we realized simulations under the follow-
ing scenario: a WiFi communication is intercepted, the
true channel occupancy rate is equal to 64.97% and the
collision rate is equal to 40%. The observation window
contains 7880 samples, and is constituted of 5 frames with
two of them randomly issued from a collision.
Fig. 7. Performance of the four Markov chain model. (a) magnitude of the obse

Fig. 6. Four states Markov model for detecting a three sources collision.
Fig. 8 illustrates the NMSE (Normalized Mean Square
Error) of the estimation of the channel occupancy rate
defined as

NMSE¼ 10 log10
R̂�R
R

�����
�����
2

; ð24Þ

where R̂ and R are the estimated and the true channel
occupancy rates, respectively. The NMSE is estimated over
1000 Monte-Carlo runs. In this figure, we compare the
performance of the proposed algorithm to the one proposed
in [6] which requires the knowledge of the noise power s2.
We observe that for Signal to Noise Ratios (SNRs) below
12 dB, the two techniques have similar performance. The
Markov approach is outperformed by the approach proposed
in [6] for higher SNRs. The performance of the Markov
rved signal, (b) a posteriori probabilities and (c) real and estimated rank.

Fig. 8. NMSE on the estimation of the channel occupancy rate.



Fig. 10. Effect of the number of antennas on the estimation of the channel
occupancy rate.

Fig. 11. Effect of the number of antennas on the estimation of the
collision rate.

Fig. 9. NMSE on the estimation of the collision rate.
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approach is very attractive since it achieves NMSE very close
to the one in [6] without the knowledge of the noise power. In
the same figure, the performance of the proposed algorithm is
plotted when α0 is chosen 100 times bigger. We observe that
even with this bad choice of the transition probabilities the
proposed algorithm still has a good estimation capability of
the channel occupancy rate. Interestingly, the performance
first monotonically improves as the SNR increases (typically
up to SNR¼15 dB) however the improvement becomes
saturated for very high SNRs. This saturation is due to the
fact that our estimator has a “bias”, i.e., as the SNR increases
the error does not tend to zero because of the bias.

Fig. 9 compares the performance of our algorithm to the
ones proposed in [7,8]. We observe that the proposed
approach outperforms both the techniques based on Akaike
Information Criterion (AIC) and Minimum Description Length
(MDL). This is mainly due to the fact that the estimation is
done jointly in our approach, when on the other hand for [7,8]
we first need to estimate the number of frames using [6] than
extract the ones suffering of a collision. Thus, two indepen-
dent sources of error are possible in that case: one in the
numerator and one in the denominator. However, converse to
the Cor estimation when α0 became 100 times bigger the
algorithm loses its accuracy and our approach is outperformed
when estimating the collision rate. The main advantage of the
proposed approach lies on the fact that it does not require any
algorithm to detect the frame edges, when the approach
proposed in [7,8] needs to know perfectly the edges of the
frame to perform AIC and MDL on it and then decide whether
a collision occurred or not.

Concerning the required precision. According to the
experimental tests conducted by the authors in [8], the
variance on the estimation of the metrics is a function of
three parameters, namely the number of competing sta-
tions, the throughput and the length of the observation
window. A conclusion has been made that knowing the
metrics with a very high precision (up to 10�3) is not
required because for example a Cor of 60% or 60.001% will
not change anything to the decision or to the Quality of
Service that can be achieved. Thus a precision of 10�1 is
largely sufficient in the PHY layer. According to the NMSE
figures presented in the paper this precision is largely
achieved specially in the SNR operating range of a WiFi
system. According to [27], a WiFi link is classified accord-
ing to the SNR as follows:
�
 SNR440 dB, excellent quality (5 bars); always associated;

�
 25oSNRo40 dB, very good quality (3–4 bars); always

associated;

�
 15oSNRo25 dB, low quality (2 bars); always associated;

�
 10oSNRo15 dB, very low quality (1 bar); mostly

associated;

�
 5oSNRo10 dB, no signal; not associated.
Finally, we studied the effects of the number of antennas
on the performance of our algorithm, under the same scenario
cited above. Figs. 10 and 11 show the NMSE on the estimation
of the channel occupancy rate and the collision rate respec-
tively. One can see that the estimator of the Cor behaves better
for higher number of antennas specially for low SNR values.
Starting from 10 dB the NMSE is constant and wonders
around �50 dB, any change around this value is insignificant



M. Rabie Oularbi et al. / Signal Processing 96 (2014) 274–283 283
since a very high precision is already achieved. Concerning
the collision rate, one can obviously observe from Fig. 11 that
better performance is achieved for higher number of anten-
nas. We should note that for complexity purposes a receiver
with low number of antennas is always preferred, those
simulations have been carried out for comparison purposes
only.
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