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a b s t r a c t

Multi-mode Resource Constrained Project Scheduling Problem (MRCPSP) aims at finding

the start times and execution modes for the activities of a project that optimize a given

objective function while verifying a set of precedence and resource constraints. In this

paper, we focus on this problem and develop a hybrid Genetic Algorithm (MM-HGA) to

solve it. Its main contributions are the mode assignment procedure, the fitness function

and the use of a very efficient improving method. Its performance is demonstrated by

extensive computational results obtained on a set of standard instances and against the

best currently available algorithms.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Due to steadily shortening product life cycles, globali-
zation of markets and decreasing profit margins, industrial
projects have to be realized facing tight time and resource
constraints. Within the planning process, the scheduling of
jobs necessary for successfully completing a project as
early as possible is a major task which is challenging and
mathematically complex as soon as resource constraints
are explicitly considered. Most manufacturing systems
comprise resources, such as labour, machines and support
equipment. Labour and work centres are usually the
constraining resources when creating a schedule and their
cost generally represents the major part of the production
cost. Therefore, activity sequencing and resource allocation
should be coordinated carefully and optimized jointly in
order to optimize system performance, as specified by one
or more measures (Kadrou and Najid, 2006).
ll rights reserved.
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Indeed, applications of project scheduling can be found
in diverse contexts such as construction engineering,
software development, research and development pro-
jects, etc. Moreover, project scheduling is important for
make-to-order companies where the capacities have been
cut down in order to meet lean management concepts
(Brucker et al., 1999). Project scheduling problems consist
of activities, resources, precedence relations and perfor-
mance measures (Slowinski et al., 1994). When the
capacity of resources is limited the resulting scheduling
problems are known as Resource-Constrained Project
Scheduling Problems (RCPSP).

The RCPSP involves the scheduling of the activities
(or jobs) of a project in order to minimize its total duration
subject to precedence relations and constant availability
constraints on the required set of renewable resources
(as machines or manpower). In this case each activity
may be characterized by a unique duration and a singular
collection of resource requirements that have to be available
each time period the activity is being executed. A more
general version of this problem is the Multimode Resource-
Constrained Project Scheduling Problem (MRCPSP) where
activity duration is a discrete function of renewable and
non-renewable resources. An example of the latter resource
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category is money if the budget of the project is limited,
that is, the availability of this resource within the entire
project is limited.

The problem is one of the most general and most
difficult project scheduling problems and as a general-
ization of the well-known job shop problem it belongs to
the class of the NP-hard problems (Blazewicz et al., 1983).
Therefore, in practice, heuristic algorithms to generate
near-optimal schedules for large and highly constrained
projects are needed.

This paper proposes a new heuristic approach for the
MRCPSP. It is a hybrid Genetic Algorithm (GA) that uses a
powerful local search method to improve the solutions
provided by the GA. The main contributions are the mode
assignment of the initial population, a new fitness
function and the design of a very efficient improving
method. Concretely, the improving method proposed in
Tormos and Lova (2001) for the RCPSP has been extended
to the multimode case. The consideration of multiple
modes for activities requires this extension of the method
that in addition to the change of the scheduling time
usually implies the change of the execution mode looking
for a new optimized position for each activity. The
resulting method is applied to each feasible schedule
drastically reducing its duration.

The remainder of the paper is organized as follows:
Section 2 is devoted to problem formulation and to review
the state-of-the-art. In Section 3 the new heuristic
solution technique is described and the procedure to
reduce the project completion time of feasible schedules
is developed. The performance of the new heuristic
approach is evaluated against the best heuristic and
metaheuristic methods published in the literature
through a wide computational experience detailed in
Section 4. Finally, the main conclusions and directions of
future research are drawn in Section 5.
2. Problem formulation and solving procedures

The problem considered in this paper involves the
scheduling of J ðj ¼ 1; . . . ; JÞ activities that may have more
than one execution mode and renewable as well as non-
renewable resource constraints exist. The amount of a
non-renewable resource ðRNRÞ that can be consumed
during the project is limited. Different activity execution
modes ðm ¼ 1; . . . ;MÞ require different amounts or differ-
ent types of resources and represent alternative ways of
realising an activity. Each activity mode thus specifies a
non-preemptable unique activity duration and a set of
requirements for both renewable and non-renewable
resources. The objective is to obtain a feasible start/finish
time ðSj=FjÞ of the activities in order to minimize the
project completion time.

To model the MRCPSP we assume that activities are
topologically ordered, i.e. each activity j has an activity
number that is larger than the number of all its immediate
predecessors i 2 Pj. We also assume the existence of a
unique dummy start and finish activity, j ¼ 1 and j ¼ J,
each only realizable in a single mode associated with zero
duration and zero resource demand, respectively. For all
other activities we assume that modes are sorted in the
order of non-decreasing duration. Each activity j and each
mode m has an integer duration ðdjmÞ and uses/consumes
a discrete amount of renewable/non-renewable resources
ðrjmkÞ. Given an upper bound T of the project’s makespan
(e.g. the sum of the maximum activities duration), the
earliest and latest finish times, EFTj and LFTj, can be
calculated performing a traditional forward pass assigning
to each activity its shortest mode and a traditional
backward pass after assigning LFTJ ¼ T . Defining the
variables of the model as binary variables xjmt which
equal 1 if activity j is scheduled in mode m ð1pmpMjÞ to
finish at t, and 0 otherwise, the problem can be
formulated as follows (Talbot, 1982):

Minimize
XMj

m¼1

XLFTj

t¼EFTj

txjmt (1)

XMj

m¼1

XLFTj

t¼EFTj

xjmt ¼ 1; j ¼ 1; . . . ; J (2)

XMi

m¼1

XLFTi

t¼EFTi

tximtp
XMj

m¼1

XLFTj

t¼EFTj

ðt � djmÞxjmt ,

j ¼ 2; . . . ; J; i 2 Pj (3)

XJ�1

j¼2

XMj

m¼1

rjmk

Xtþdjm�1

t¼t

xjmtpRk; k 2 R; t ¼ 1; . . . ; T

(4)

XJ�1

j¼2

XMj

m¼1

rjmk

XLFTj

t¼EFTJ

xjmtpRk; k 2 NR (5)

xjmt 2 f0;1g; j ¼ 1; . . . ; J,

m ¼ 1; . . . ;Mj; t ¼ EFTj; . . . ; LFTj (6)

Constraint set (2) ensures that each activity j is performed
in one of its modes and is finished within its time window
½EFTj; . . . ; LFTj�. Constraints (3) represent the precedence
relations. The availability per period of the renewable
resource types is maintained by constraint set (4).
Constraints (5) limit the total resource consumption of
non-renewable resources to the available amount. The
definition of all decision variables as binary is considered
in constraints (6). Finally, (1) is the objective function
considered in this work, to minimize the project comple-
tion time.

The feasible scheduled start/finish time ðSj=FjÞ of the
activities of the project is obtained as solution of this
model. This model can be solved to optimality using the
exact method of Talbot (1982) that was the first to present
an enumeration scheme to solve the MRCPSP. Other exact
approaches to solve this problem have been proposed by
Patterson et al. (1989), Sprecher et al. (1997), Sprecher and
Drexl (1998) and Demeulemeester et al. (2000).

Patterson et al. (1989) propose an enumerative type of
branch and bound algorithm based on the generation of a
precedence tree that guides the search for solutions.
Sprecher et al. (1997) extend the concept of delaying
alternatives introduced by Demeulemeester and Herroe-
len (1992) for the single-mode RCPSP, and define the
concepts of delay and mode alternatives. Finally, Sprecher
and Drexl (1998) present an exact procedure of the branch



ARTICLE IN PRESS

A. Lova et al. / Int. J. Production Economics 117 (2009) 302–316304
and bound type in which the enumeration scheme is
enhanced by search tree reduction schemes.

On the other hand, Demeulemeester et al. (2000)
present a depth-first branch and bound procedure for the
discrete time/resource tradeoff problem in project net-
works. In this work, it is considered that in real-life
projects, it often occurs that only one renewable bottle-
neck resource is available and that the activities have a
total work content which indicates how much work
(expressed in man-periods) has to be performed.

However, despite the encouraging results obtained in
the above mentioned exact methods, it has to be recalled
that exact algorithms in general fail to solve problems
with more than 20 activities thus leaving heuristics as
unique alternative.

Heuristic solution procedures have been proposed by
Drexl and Grünewald (1993), Özdamar and Ulusoy (1994),
Boctor (1993, 1996a, b) and Kolisch and Drexl (1997). In
addition, the solution procedure of Talbot (1982) as well
as that devised by Patterson et al. (1989) can be applied as
heuristics truncating the search procedure by imposing
time limits.

Drexl and Grünewald (1993) develop models for
formulating non-preemptive project scheduling problems
with general resource availability and requirements as
well as multimode time resource trade-offs. For the
solution of this model, a stochastic scheduling method is
presented which outperforms traditional deterministic
scheduling rules.

Özdamar and Ulusoy (1994) present a constraint-based
approach to solve the MRCPSP with jNRj ¼ 1. They employ
a parallel scheduling method to decide via so-called
essential conditions which activity-mode pairs have to
be scheduled. For each combination the increase over a
lower bound of the makespan of the project is calculated
and the combination that induces the smallest increase
over the lower bound is then scheduled.

Kolisch and Drexl (1997) propose a local search
heuristic that consists of three phases. It is interesting to
note that in the computational experience they carried out
neither the truncated branch and bound procedure of
Talbot (1982) nor the heuristic of Drexl and Grünewald
(1993) are able to find a feasible solution to all the project
instances considered. However, the heuristic of Kolisch
and Drexl (1997) is able to find a feasible project schedule
for all the project instances considered.

On the other hand, Boctor (1993, 1996a, b) describes
heuristic solution methods for the MRCPSP when only
renewable resource types are considered. In the first work,
the author proposes several heuristics based on priority
rule with a modified version of the parallel schedule
generation scheme and several rules are used both to sort
the activities in the eligible set and to select the mode of
the activities. Among the best heuristics are the ones
based on the Minimum Latest Finish Time and the
Minimum Slack rules calculated assigning to each activity
its mode with the shortest duration. In Boctor (1996a) a
deterministic heuristic that enumerates some schedulable
combinations of activities and chooses from them the one
having the best value for an evaluation criterion is
proposed. Finally, in Boctor (1996b) a simulated annealing
algorithm is presented. The heuristic is able to handle
single-mode and multimode problems and to consider
different objective functions.

Recently, efforts have been addressed towards the
application of metaheuristics such as those by Özdamar
(1999), Hartmann (2001), Józefowska et al. (2001), Alcaraz
et al. (2003), Bouleimen and Lecocq (2003) for the
MRCPSP when renewable and non-renewable resource
constraints exist. Özdamar (1999) develops a GA based on
an encoding which is made up by a sequence of priority
rules and a mode assignment. As decoding procedure,
parallel schedule generation scheme is used. For each
individual two schedules are computed by scheduling
forward and backward. Hartmann (2001) and Alcaraz
et al. (2003) apply GAs that use precedence activity list
(AL) and a mode assignment list as representation of one
individual. In addition, Alcaraz et al. (2003) extend the
representation given for RCPSP by adding an extra gene for
backward or forward scheduling direction. They use
different fitness function and both of them apply a simple
local search procedure to non-feasible mode assignments
in the initial population. On the other hand, Józefowska
et al. (2001) and Bouleimen and Lecocq (2003) use
simulated annealing algorithms. Concretely, Bouleimen
and Lecocq (2003) propose a new design of the conven-
tional simulated annealing search scheme taking into
account the specificity of the solution space of the project
scheduling problems.
3. Description of the new hybrid GA

Before the GA itself is started, a pre-processing
procedure over the project data in order to reduce the
search space is applied. This procedure was introduced by
Sprecher et al. (1997) to reduce the amount of data and
speed up the execution of their algorithm. This procedure
has been used later on by Hartmann (2001) and Alcaraz
et al. (2003) in their GAs. The reduction procedure
consists of excluding inefficient modes, non-executable
modes and non-renewable resources from the input data.
Following Sprecher et al. (1997) procedure, within a
feasible schedule no activity can be performed in a non-
executable mode. If there is an optimal schedule for a
given instance, then there is an optimal schedule in which
no activity is accomplished in an inefficient mode. Finally,
excluding a redundant non-renewable resource from a
project instance does not affect the set of the feasible
(optimal) schedules. A formal definition of inefficient
modes, non-executable modes and redundant non-renew-
able resources can be found in Sprecher et al. (1997).

After the application of the pre-processing procedure,
the execution of the GA itself starts. First, the initial
population ðPÞ or first generation is generated and each
individual is transformed into a schedule and evaluated.
Once all the individuals in the initial population have been
assigned a fitness value, the following steps are repeated
until the terminating condition (execution time or
number of feasible solutions or number of generations)
is reached. First a selection mechanism makes the best
individuals to have a higher probability of surviving for
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MM-HGA  (POP_SIZE, end_cond)
begin
P = Generate_Initial_Population(POP_SIZE)
While NOT (end_cond) do
begin
P = Selection(P)
P = Crossover(P)
 P = Mutation(P)
 For each j in P

 If j is feasible with respect to NR 
j = MM-FBI(j)

 BEST_Individual = Evaluate_Population(P)
end
return BEST_Individual
end

Fig. 1. Hybrid Genetic Algorithm (MM-HGA).

Fig. 2. Representation of an individual.
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the next generation. The population is randomly divided
into pairs of individuals and each pair undergoes the
crossover procedure to produce offspring with a given
probability. Then, a mutation procedure is applied to
modify some of the individuals before a new population
is obtained. Finally, an improving procedure is applied
to each individual whenever it is feasible w.r.t. non-
renewable resources. Fig. 1 summarizes this procedure
(MM-HGA) each iteration of which corresponds to a new
generation of individuals. The main characteristics of each
step of the algorithm are detailed in the following
sections.

3.1. Solution encoding and decodification process

In order to apply a GA to a particular problem, an internal
representation for the solution space is needed. The choice
of this component is one of the critical aspects for the
success/failure of the GA for the problem under study.
Kolisch and Hartmann (1999) distinguished five different
schedule representations in the RCPSP literature, from which
the AL representation and the random-key (RK) representa-
tion are the most widespread. In both representations, a
priority structure between the activities is embedded. In the
AL representation, the position of an activity in the AL
determines the relative priority of that activity regarding the
other activities, while in the RK representation the position
of an activity is based on the priority value attributed to an
activity. Hartmann and Kolisch (2000) concluded from
experimental tests that procedures based on AL representa-
tions outperform the other procedures.

In this work, we have used an AL as representation of a
solution. Each individual is represented by a double list: an
AL and a mode assignment list both with as many
positions as activities in the project. In the AL each activity
is placed after all its predecessors, therefore it is
precedence feasible. The mode assignment represents the
execution mode of each activity. This representation has
been used by several authors such as Hartmann (2001),
Józefowska et al. (2001) and Bouleimen and Lecocq (2003)
amongst others. Alcaraz et al. (2003) add to this repre-
sentation an additional gene forward/backward (f/b) that
indicates the direction in which the serial scheduling
generation scheme is used to build the schedule.

Indeed, the serial schedule generation scheme has
been the most widely used as a decoding procedure
mainly because it is immediately applied to AL represen-
tations. However, the consideration of both schedule
generation schemes would benefit the solving process
by allowing to explore different regions of the search
space. Thus, we propose to add an additional gene to the
encoding of each individual called serial/parallel (s/p)
indicating the Scheduling Generation Scheme (SGS) used
to generate the schedule. The Serial SGS can be applied
directly from this representation to transform the indivi-
dual into its corresponding schedule; on the other hand
the P-SGS uses the position of the activity as a priority rule
to select the activity to be scheduled. The codification
proposed for the MRCPSP is illustrated in Fig. 2.

3.2. Fitness computation

When applying the GA, we need to define an evaluation
function that determines the probability of survival of an
individual to the next generation. Frequently the fitness
function coincides with the objective function because it is
an accurate measure of how good the individual is. In
MRCPSP when the objective is to minimize the project
duration, the makespan of the schedule related to an
individual should be a good fitness value unless for the fact
that some individuals of each population can be infeasible
with respect to non-renewable resources. These indivi-
duals must also be assigned a value indicating their fitness.
Furthermore, the fitness value of infeasible individuals
should not be better than that of feasible ones, that is to
say infeasible individuals have to be penalised but
considered in the selection process. Different evaluation
or fitness functions have been proposed in the literature
taking into account the just mentioned considerations.

Hartmann (2001) defined the following fitness func-
tion (also used later by Józefowska et al., 2001):

f ðIÞ ¼
makðIÞ if SFTðIÞ ¼ 0

T þ SFTðIÞ otherwise

(
(7)

where makðIÞis the makespan of the individual I and T is
the upper bound on the project’s makespan that is given
by the sum of the maximal durations of the activities.
SFTðIÞis the excess of non-renewable resources defined by

SFTðIÞ ¼
X
k2NR

max 0;
XJ

j¼1

ðrjmk � RkÞ

8<
:

9=
; (8)

Therefore an individual is a feasible schedule if and only if

SFTðIÞ ¼ 0.
Alcaraz et al. (2003) stated the following weak points

of this fitness function:
(i)
 The fitness value of an infeasible individual does not
consider its duration and only depends on the excess
of non-renewable resources.
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(ii)

Performance of the fitness functions: (a) fitness function comparison

(average deviation with respect to the optimal solution (%)), (b)
The upper bound T is so poor that an infeasible
individual will have a probability close to zero and
will not participate in the genetic process.
percentage of optimally solved instances.

Fitness function J10 J12 J14 J16 J18 J20

(a)

This paper 0.06 0.17 0.32 0.44 0.63 0.87

Alcaraz et al. (2003) 0.07 0.16 0.33 0.48 0.67 0.93

Hartmann (2001) 0.10 0.18 0.35 0.51 0.65 0.85

(b)

This paper 98.51 96.53 92.92 90.00 84.96 80.32

Alcaraz et al. (2003) 98.32 96.71 92.20 89.09 83.88 79.24

Hartmann (2001) 97.76 96.34 91.83 88.36 84.24 80.87

1 More details about instances are given in the Computational

experience section.
To overcome these drawbacks Alcaraz et al. (2003)
propose the following fitness function:

f ðIÞ ¼

makðIÞ if SFTðIÞ ¼ 0

max_makðPÞ þmakðIÞ

�min_CP þ SFTðIÞ otherwise

8><
>: (9)

where makðIÞ is the makespan of the individual I and
max_makðPÞ gives the maximal makespan of feasible
solutions related to individuals of the current generation
which represents an upper bound of the project’s make-
span. To this bound is added the excess of non-renewable
resources SFTðIÞ and the increase over the makespan given
by the minimal critical path, min_CP using the minimal
duration of activities.

With this fitness function two solutions with identical
SFT but different makespan will have a different fitness
value and the penalty of a non-feasible individual gives
reasonable probabilities to participate in the genetic
process.

However, this fitness function is built by adding units
of time from the makespan and units of resources from
the excess of non-renewable resources. The magnitude of
both aspects of the solution can disturb the meaning of
the fitness function. To solve this weak point, we propose
a new fitness function where both aspects of the solution
are jointly considered but normalized in order to elim-
inate their magnitudes.

Therefore, we propose a new fitness function that is
computed for each individual according to the following
expressions depending on whether individual I is feasible
ðSFTðIÞ ¼ 0Þ or non-feasible:

f ðIÞ ¼

1�
max_makðPÞ �makðIÞ

max_makðPÞ
if SFTðIÞ ¼ 0

1þ
makðIÞ �min_CP

makðIÞ

þ
PK

k2NR

max 0;

PJ
j¼1rjmk � Rk

Rk

( )
otherwise

8>>>>>>>>><
>>>>>>>>>:

(10)

The feasible individual with the greatest makespan will
have a fitness value equal to 1 while the best one will have
a fitness value close to zero.

The fitness function value of a non-feasible individual
always is greater than 1. Then, all non-feasible individuals
will have a fitness value greater than that of the feasible
ones (and will have fewer opportunities for survival in the
selection process). In addition, the sum of the normalized
deviation of the makespan from the minimal critical path
and the normalized excess of non-renewable resources are
added. This fitness function solves weak points of fitness
computations for the MRCPSP that appeared in the
literature.

In order to test the performance of this fitness function
against the ones proposed by Hartmann (2001) and
Alcaraz et al. (2003) with the same computational effort,
the well-known PSPLIB multimode sets of instances1 J10,
J12, J14, J16, J18 and J20 have been solved by the hybrid GA
developed in this work and the three fitness functions
under consideration. Results are reported in Table 1 and
show that the fitness function proposed in this work has a
more robust behaviour thus making more appropriate its
use in the MRCPSP. Concretely, in 4 out of the 6 instance
sets the new fitness function obtains the best results
(measure as the deviation from the optimum). Further-
more we can show by a t-test over all instance that the
new fitness function gives better results than the other
ones with a 90% level of confidence.

3.3. Initial population

The GA starts with the generation of the initial
population, that is, a set of POP_SIZE solutions. Each
individual is obtained randomly selecting the genes p/s
and f/b and a selection mode described below. With this
information, each solution is obtained using the heuristic
based on the Minimum Latest Finish Time (LFT) priority
rule.

3.3.1. Activity selection mode

The MRCPSP in reference to RCPSP poses an additional
problem since not all mode assignments are feasible with
respect to the non-renewable resources. For this purpose
we propose a procedure to maximize the probability of
obtaining feasible solutions in the initial population thus
starting the evolution process of the GA with a good set of
solutions.

The probability of obtaining a feasible mode assign-
ment following this procedure is very high and it does not
require any additional computational effort. This proce-
dure that we have called Minimum Normalized Resources
(MNR) implies the selection for each activity j of the mode
with minimum value NR:

NRjm ¼
X
k2NR

rjmk

Rk
(11)
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To illustrate the application of this criterion Table 2 shows
the different execution modes of an activity that uses two
non-renewable resources R1 and R2. Their total availabil-
ities are R1 ¼ 40 and R2 ¼ 20, respectively. Following the
MNR criterion calculated in the forth column, the second
mode will be chosen.

Table 3 shows the percentage of feasible mode assign-
ments generated by the MNR mode selection method,
random selection mode (Random) and the selection of the
mode with longest duration (MaxDur) for the set of
instances J10, J12, J14, J16, J18, J20 and J30 of PSPLIB
(Kolisch and Sprecher, 1996).

The MNR selection mode procedure obtains feasible
non-renewable assignments in a range that varies from
95.61% to 98.73% of the cases, while the MaxDur selection
mode (that usually selects the mode with the lowest
requirement of resources) obtains feasible mode assign-
ments in a range that varies between 90.30% and 95.29%
of the cases. Finally, Random selection mode assigns
feasible modes only in a short number of cases.

The first individual of the initial population is gener-
ated by the MNR procedure that obtains a feasible non-
renewable assignment with a very high probability In
order to add diversity, the mode assignment of the
remaining individuals of the initial population is based
on a randomized version of the MNR criterion. For each
individual the process is the following:
Step 1.
Table 2
MNR exa

Mode

1

2

3

Table 3
Percentag

Method o

Random

MaxDur

MNR
The process starts with the MNR mode assign-
ment.
Step 2.
 The mode of at most J=2 activities is randomly
changed.
Step 3.
 If the resulting mode assignment is feasible, then

STOP.

Otherwise, activities are randomly sorted and each
activity tries to change its current mode to another one
able to reduce the level of infeasibility of the non-
renewable resources (if it exists).
Table 4
Step 4.

Percentage of individuals with feasible non-renewable mode assign-
If the resulting mode assignment is feasible, then

STOP.

ments in the initial population according to the number of attempts
Otherwise, Go to Step 1
mple.

rjm1 rjm2 MNR

0 7 0=40þ 7=20 ¼ 0:35

3 0 3=40þ 0=20 ¼ 0:075

0 2 0=40þ 2=20 ¼ 0:10

e of feasible mode assignments.

f selection mode J10 J12 J14

53.92 56.12 55.17

90.30 93.42 91.47

96.08 95.61 97.4
This process is repeated up to a pre-established number of
attempts (Att) that in this paper is set to 200.

At first glance it can be thought that this procedure of
obtaining a feasible non-renewable mode assignment is
very time consuming. However, in practice a feasible non-
renewable mode assignment is obtained in a percentage
of individuals varying from 79.71% to 86.69% and in more
than 96% of the individuals, a maximum of 3 attempts are
needed. Data corresponding to the different sets of
instances are reported in Table 4.

3.4. Crossover operator

One of the unique and important aspects of the
techniques involving GAs is the important role that
recombination (traditionally, in the form of crossover
operator) plays. Crossover combines the features of two
parent chromosomes to form two offspring that inherit
their characteristics. The individuals of the population are
mated randomly and each pair undergoes the crossover
operation with a probability of Pcross, producing two
children by crossover. The parent population is replaced
by the offspring population. The crossover is one of the
most important genetic operators and must be correctly
designed. Crossover must combine solutions to produce
new ones. Crossover must preserve and combine ‘‘good
building blocks’’ to build better individuals Given two
individuals selected for crossover, a mother M and a father
F, two offspring, a daughter D and a son S are produced.

We have implemented the well-known 2-point cross-

over with Pcross ¼ 0:9. Firstly, two integer and non-
negative crossover points k1 and k2 are randomly
generated ðk24k1Þ. The offspring ALs and mode assign-
ment lists are generated as follows. The first k1 positions
in the Son (S) and those from k2 þ 1 to J are inherited from
the father, exactly in the same order. The positions
J16 J18 J20 J30

54.91 55.80 58.12 59.78

93.27 94.38 94.04 95.29

6 97.27 98.73 97.83 98.55

needed.

Attempts J10 J12 J14 J16 J18 J20 J30

0a 79.71 82.95 82.64 83.84 85.03 84.61 86.69

1 11.90 10.59 10.00 9.54 8.47 8.38 6.86

2 3.55 3.00 2.99 2.72 2.57 2.52 2.21

3 1.69 1.20 1.27 1.32 1.34 1.36 1.35

4–199 3.14 1.92 2.67 2.13 2.16 2.57 2.57

200 0.00 0.33 0.43 0.45 0.42 0.55 0.32

a A feasible mode assignment is obtained in Step 3.
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between k1 þ 1 and k2 are inherited from the mother’s
sequence preserving their relative order. More precisely,
let i be the ith position in the list S, then S directly inherits
the positions of the father from the interval i ¼ 1 to k1

and from interval i ¼ k2 þ 1 to i ¼ J. Finally, positions from
i ¼ k1 þ 1 to i ¼ k2 of S are inherited from the mother.
Mother’s sequence is analyzed from 1 to J and the position
is inherited by the Son whenever it was not included in the
interval ½1; . . . ; k1� [ ½k2 þ 1; . . . ; J� of S. The mode list of S is
generated with the mode of the corresponding activities
inherited from the father and the mother. In this way, the
solution generated, the Son, is a precedence feasible
solution. The s/p and the b/f genes are inherited from the
first progenitor. The Daughter (D) is generated analogously.
Fig. 3 illustrates this procedure assuming k1 ¼ 2 and k2 ¼

7 and using the project instance of Table 5.

3.5. Mutation operator

Once the crossover operator has been applied and the
offspring population has replaced the parent population,
the mutation operator is applied to the offspring popula-
tion. Mutation alters one or more genes (positions)
of a selected chromosome (solution) to reintroduce lost
Fig. 3. Crossover operator.

Table 5
Project instance—availability: ðR1;R2;NR3;NR4Þ ¼ ð12;12;37;60Þ.

Activity Immediate successor activities dj1 Mode 1

R NR

rj11 rj12 rj13 rj14

1 4, 5, 10 2 5 9 4 7

2 6 1 6 5 6 8

3 6, 10 1 4 9 9 5

4 8, 9 1 7 3 7 8

5 7 1 7 9 4 10

6 7, 8 1 9 5 3 6

7 9 2 9 5 9 8

8 – 1 9 9 10 6

9 – 2 7 2 4 9

10 – 3 5 10 8 10
genetic material and introduce some extra variability into
the population. In fact, mutation can result in entirely new
gene values that sometimes allow the GA to reach
solutions better than those previously possible. In addi-
tion, mutation helps to prevent the population from
stagnating at any local optima.

Mutation is applied to both components of each
individual representation that are AL and mode assign-
ment list. In the first case, the mutation procedure used is
the insertion operator that works as follows: for each
activity in the AL a new position is randomly chosen
between the highest position of its predecessors and the
lowest position of its successors. The activity is inserted
into the new position with a probability of Pmut. In the GA
developed, Pmut equals 0.05.

Concerning the mode assignment list, the application
of the mutation operator changes depending on whether
the individual has or not a feasible non-renewable mode
assignment:
1.
 If the individual has a non-renewable feasible mode
assignment each activity changes randomly its mode
with the same probability Pmut.
2.
 If the individual mode assignment is non-feasible w.r.t.
non-renewable resources, a new mutation operator,
called massive mutation, is applied with the objective of
increasing diversity of the mode assignments. This
operator works as follows: for each activity randomly
chosen from AL a new mode is randomly assigned (that
could be the same as before). This process ends either
when the current non-renewable mode assignment is
feasible or when all activities of the AL have been
considered.

Finally, genes s/p and b/f change with a probability Pmut.
Using the project instance of Table 5, Fig. 4 illustrates

the mutation procedure used. Assuming activity 6 ran-
domly chosen for mutation and that its latest predecessor
is activity 3 and its earliest successor is activity 7, a
random number from 4 to 6 (the position of the activities)
has to be generated. The value obtained equals 3 and
therefore activity 6 is inserted in that position (Fig. 4b).
dj2 Mode 2 dj3 Mode 3

R NR R NR

rj21 rj22 rj23 rj24 rj31 rj32 rj33 rj34

5 5 8 2 7 6 5 6 1 6

8 5 4 5 5 8 4 5 4 6

8 3 4 6 1 8 1 4 2 3

2 6 3 5 8 2 5 3 6 5

4 7 7 2 10 9 6 2 1 10

1 9 4 3 7 5 9 3 3 6

2 9 6 7 8 3 9 4 4 8

5 9 8 6 6 9 9 8 4 5

9 7 2 4 6 10 3 1 3 3

6 4 10 5 7 7 4 9 3 7
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Fig. 4. Activity insertion mutation operator.
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Since the non-renewable mode assignment is
feasible, the mode of the activity is mutated with the
same probability and in this case changes to mode 2
(Fig. 4c). The f/b gene remains unchanged and the p/s gene
varies to s.

3.6. Selection operator

Selection is an artificial version of the natural phenom-
enon called the survival of the fittest. In nature, competi-
tion among individuals for scarce resources and for mates
results in the fittest individuals dominating over weaker
ones. Based on their relative quality or rank, individuals
receive a number of copies. A fitter individual receives a
higher number of offspring and, therefore, has a higher
probability of surviving in the subsequent generation.
There are several ways of implementing the selection
mechanism.

We have implemented 2-tournament selection. This
selection mechanism implies that two individuals are
randomly chosen from the population and compete for
survival. The best of them, i.e. the one with the best fitness
value will appear in the subsequent population. This
procedure is repeated POP_SIZE times, until POP_SIZE
individuals are selected to appear in the next population.
Elitism is applied thus guaranteeing the survival of the
best individual.

3.7. Replacement of the population

In order to design a good GA, a random replacement
procedure of the population is necessary. This operation is
applied to each generation with a given probability of
Preplac. If it is performed in the current generation, each
individual of the population is exchanged with a prob-
ability of Pexchange by a solution randomly generated using
the MNR procedure described in Section 3.3 with Att ¼ 1.
This procedure allows restarting the population or to
reintroduce some variability when it has prematurely
converged or it is stuck in a local optimum. The values of
Preplac and Pexchange are set to 0.7 and 0.1 respectively.
3.8. The multimode forward–backward improvement

method (MM-FBI)

The project completion time of each feasible schedule
generated by the GA can be reduced by means of the
following local search technique. The proposed method is
an extension of the FBI method described by Tormos and
Lova (2001) (also called justification, Valls et al., 2005) and
widely used in recent papers to approximately solve the
RCPSP. The consideration of multiple modes for activities
requires the extension of the method that in addition
to the change of the scheduling time usually implies
the change of the execution mode looking for a new
optimized position of each activity. The resulting method
is applied to each feasible individual drastically reducing
its duration.

A feasible schedule for the MRCPSP consists of a mode
assignment M and a schedule S, denoted as ðM; SÞ. The
mode assignment M is a J-tuple M ¼ ðmð1Þ; . . . ;mðJÞÞ that
assigns to every activity j a unique mode mðjÞ. The
schedule S is a J-tuple S ¼ ðSð1Þ; . . . ; SðJÞÞ that assigns to
every activity j a unique start time Sj.

The feasible project schedule can be improved, i.e. the
project completion time reduced, with the application of a
multimode backward–forward method (MM-BF) or the
application of a multimode forward–backward method
(MM-FB) depending on whether the initial feasible
schedule is obtained with the gene f/b set to f or b,
respectively. Each iteration of these methods consists of a
Multimode Backward pass and a Multimode Forward pass.
The implementation of the MM-BF and the MM-FB
methods is based on ALs that works on what is called
the topological order of the graph, that is, a precedence
ordered AL where each activity in the list has all its
successors/predecessors in earlier positions. Another im-
portant difference between the improving method pro-
posed in Tormos and Lova (2001) and its extension to the
MRCPSP presented in this work is that while in the first
improving method, the MM-BF and MM-FB methods are
based on the completion of partial feasible schedules, in
the currently adapted method, a feasible schedule of the
project always exist, and a rescheduling process is applied
in order to reduce the project completion time. That is to
say, when an activity changes its feasible start/finish time,
the remaining activities have a feasible start/finish time.

The multimode backward pass (MM-B) takes each
activity i in non-increasing order of its scheduled finish
time. The activity i is rescheduled in the feasible mode
(renewable and non-renewable resources) that allows the
activity to be scheduled at the latest feasible start time in
the time window delimited by ½Si;minðS0j � dimjm

belongs to MiÞ8Precedenceði; jÞ�, S0j being the scheduled
start time of activity j in the updated feasible schedule. If
ties occur the activity mode with the shortest duration is
chosen. Thus, this process can imply a change of the mode
assignment of activity i in order to expand the time
window of the predecessor activities.

Once all activities in the AL have been evaluated, if
Smin
¼ minðSjÞ is greater than zero it implies to reduce the

completion time of the project by Smin units of time. In
such a case the scheduled start time of each activity is
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Table 6
Project instance: mode assignment and start time in each stage of the

new improving method.

Activity Initial feasible

solution

MM-BFI

MM-B MM-F

Mode

assignment

Sj Mode

assignment

Sj Mode

assignment

Sj

1 1 0 1 0 1 0

2 2 2 2 3 2 2

3 3 6 3 3 3 2

4 3 6 3 19 3 15

5 2 2 3 2 3 2

6 3 14 1 11 1 11

7 3 19 3 12 3 12

8 3 29 3 22 2 22

9 3 22 3 21 3 17

10 3 22 3 15 3 15
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updated ðSj ¼ Sj � Smin
Þ as well as their scheduled finish

time according to Fj ¼ Fj � Smin.
The multimode forward pass processes (MM-F) each

activity i of the feasible schedule in non-decreasing order
of its scheduled start time. Each activity i is rescheduled in
the feasible mode assignment (renewable and non-
renewable resources) that allows the activity to be
scheduled at its earliest feasible finish time in the time
window delimited by ½maxðF 0jÞ8Precedenceði; jÞ; Si�, F 0j being
the finish time of activity j in the updated feasible
schedule. If ties occur the activity mode with the shortest
duration is chosen. Thus, this process can imply a change
of the mode assignment of activity i addressed to expand
the time window of the successor activities.

It is important to note that when an activity is
rescheduled both in MM-F and MM-B only those modes
that maintain the non-renewable feasibility are consid-
ered. Thus, feasibility with respect to the non-renewable
resources is always preserved even if the mode assign-
ment were changed in forward and backward passes.

The MM-BF method starts from the feasible schedule
obtained with forward scheduling direction (f gene) and
each iteration implies the application of the Multimode
Forward pass after the application of the Multimode
Backward pass. On the other hand, the MM-FB method
starts from the feasible schedule obtained with backward
scheduling direction (b gene) and each iteration implies
the application of the Multimode Backward pass after the
application of the Multimode Forward pass. Hence, each
MM-FBI pass (MM-FB or MM-BF pass) obtains one feasible
schedule with a project completion time lower than or
equal to the previous one. Since additional iterations can
lead to further reducing the project completion time,
MM-FB or MM-BF is applied until no improvement is
achieved.

This extension of the Backward–Forward method
applied to the RCPSP by Tormos and Lova (2001) to the
MRCPSP case (MM-FBI) is an effective technique to reduce
the feasible project completion time when renewable and/
or non-renewable resources constraints exist.

3.8.1. A numerical example

In order to illustrate the multimode improving techni-
que proposed in this work, we will apply it to a project
instance with 10 non-dummy activities that require two of
two constrained renewable resources and two of two non-
renewable resources. Concretely, the project instance used
is j1037_2, belonging to the J10 set of instance generated
by Kolisch and Sprecher (1996). This project is one of the
most difficult to solve since all activities require units
of two highly constrained renewable resources and units
of two highly constrained non-renewable resources. In
Table 5 is shown for each activity, its immediate successor
activities, the duration and the resource requirements for
each mode.

Using the feasible mode and the activity start time
shown in Table 6 (second column), an initial feasible
project solution is obtained with forward scheduling
direction (Fig. 5a). The project duration is 38 periods of
time and this feasible schedule becomes the input data for
the improving method MM-FBI.
After the application of the MM-B pass, the project
completion time is reduced by 7 periods of time (Fig. 5b).
The MM-B implies also the change of the mode assign-
ment of activities 5 and 6. Their final mode assignments
are also shown in Table 5.

When the MM-F pass is applied to the feasible
schedule just obtained by the MM-B pass, the project
completion time is reduced again by 4 periods of time
(Fig. 5c). Activity 8 changes its mode assignment and the
final activity mode assignment is shown in Table 6.

The final solution obtained after applying one MM-FBI
iteration has duration of 27 periods of time that means a
makespan 11 time units shorter than the initial feasible
schedule. This duration corresponds to the optimal
solution for the instance considered. In other projects,
additional MM-BF iterations can be needed to further
reduce the project completion time.
4. Computational experience

The well-known sets of instances generated by the
project generator ProGen for the MRCPSP and available at
http://129.187.106.231/psplib/ have been used to test the
performance of the hybrid GA proposed. Concretely these
sets for the multimode problem contain instances with 10,
12, 14, 16, 18, 20 and 30 non-dummy activities. Each of the
non-dummy activities may be performed in one out of
three modes that can require units of two renewable and
two non-renewable resources. The duration of a mode
varies between 1 and 10 periods of time. The set of
instances with 20 non-dummy activities currently is the
hardest standard set of multimode instances for which all
optimal solutions are known. Consequently, the quality of
a heuristic is usually measured in terms of deviation with
respect to the optimum. However, for the set of instances
with 30 activities not all optimal solutions are known,
then the measurement is based on the deviation with
respect to the critical path when the shortest mode for
each activity is used. The computational experiments have
been carried out on a PC Pentium with 3 GHz and 1 GB

http://129.187.106.231/psplib/
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Fig. 5. (a) Initial feasible solution, (b) solution after applying MM-B, (c) solution after applying MM-F.
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RAM using an implementation in C compiled with
Microsoft Visual Cþþ v.6.0 under Windows XP.

When comparing the performance of a set of algo-
rithms it is indispensable to make the comparison on the
basis of the same computational effort regardless the
computer used. With this idea in mind since the work by
Hartmann and Kolisch (2000) the performance of differ-
ent algorithms is compared on the basis of the number of
schedules generated to achieve a given result or solution.
Furthermore, more recently Hartmann and Kolisch (2006)
have specified this approach even more and they propose
that the computational effort to generate one schedule
should correspond to (at most) one start time assignment
per activity, as done by an SGS. Obviously, the computa-
tional effort of one MM-FBI pass is greater than the one
needed to generate two SGSs. For this reason, in this work
the computational effort to generate one MM-B or one
MM-F equals the sum of times each activity of the project
has obtained a feasible start time divided by the number
of activities of the project. Furthermore, regardless of
whether the start and finish time of each activity changes
or not, at least one feasible start time is obtained and
computed for each activity. For instance, in the project
used in Section 3.8.1, the application of the MM-B and the
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MM-F is equivalent to the computational effort when 1.1
and 1.6 SGSs are generated, respectively.
4.1. Performance of the massive mutation operator in the

Simple GA

The first analysis that we have performed is the study
of the influence of the massive mutation operator on the
Simple GA (i.e. the MM-FBI method is not applied).

Fig. 6 illustrates the results for both J10 and J20 sets of
instances when the number of schedules varies from 500
to 6000. In all cases, the application of the massive
mutation leads to better results also regardless the
number of schedules generated. As conclusion, the
massive mutation is included in the MM-HGA (Table 7).
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Table 7
Impact of the massive mutation operator on the basic GA.

#Sched J10

Simple GA without massive mutation Simple GA

Av.Dev.OS (%) CPU-time (s) Av.Dev.OS (%) CPU-time (s)

500 4.16 0.01 3.75 0.01

1000 1.81 0.02 1.31 0.02

2000 1.07 0.03 0.50 0.03

3000 0.77 0.05 0.30 0.05

4000 0.63 0.06 0.22 0.06

5000 0.61 0.08 0.16 0.08

6000 0.49 0.09 0.16 0.09
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Fig. 7. Performance of the Simple GA and MM-H
4.2. Performance of the incorporation of the MM-FBI

method to the Simple GA

The influence of the MM-FBI on the GA has been
evaluated by solving the J10 and J20 sets of instances with
a computational effort that varies from 500 to 6000
schedules. Fig. 7 illustrates the results with and without
using the local search process. The application of the MM-
FBI proves to be decisive by drastically improving the
performance of the GA. When the J10 set is considered,
the GA without the inclusion of the MM-FBI gives a
deviation with respect to the optimal solution that varies
from 3.27% to 0.16% depending on the computational
effort. However, when the MM-FBI is included the
deviation w.r.t. the optimal solution drops until values
that vary from 0.59% to 0.04%. Conclusions are similar
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ion operator on the basic GA.

J20

Simple GA without massive mutation Simple GA

Av.Dev.OS (%) CPU-time (s) Av.Dev.OS (%) CPU-time (s)

12.26 0.02 12.39 0.02

7.56 0.03 6.99 0.04

4.94 0.06 4.41 0.06

3.95 0.09 3.46 0.09

3.44 0.12 3.00 0.12

3.07 0.15 2.61 0.15

2.77 0.17 2.51 0.17

MM-HGA Simple GA
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GA with the J10 and J20 sets of instances.
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Table 8
Performance of the Simple GA and MM-HGA with the J10 and J20 sets of instances with a computational effort that varies from 500 to 6000 schedules

generated.

#Sched J10 J20

Simple GA MM-HGA Simple GA MM-HGA

Av.Dev.OS (%) CPU-time (s) Av.Dev.OS (%) CPU-time (s) Av.Dev.OS (%) CPU-time (s) Av.Dev.OS (%) CPU-time (s)

500 3.75 0.01 0.59 0.01 12.39 0.02 2.90 0.02

1000 1.31 0.02 0.26 0.02 6.99 0.04 2.08 0.04

2000 0.50 0.03 0.14 0.03 4.41 0.06 1.38 0.06

3000 0.30 0.05 0.09 0.05 3.46 0.09 1.08 0.08

4000 0.22 0.06 0.08 0.06 3.00 0.12 0.98 0.12

5000 0.16 0.08 0.06 0.08 2.61 0.15 0.87 0.14

6000 0.16 0.09 0.04 0.09 2.51 0.17 0.82 0.18

Table 9
Performance of the MM-HGA with a computational effort of 1000, 3000

and 5000 schedules generated.

#

Schedules

Av.Dev.OS

(%)

Max. St.Dev. Optimum

(%)

CPU-time

(s)

J10

1000 0.26 16.67 1.31 95.34 0.02

3000 0.09 6.67 0.65 97.95 0.05

5000 0.06 6.25 0.55 98.51 0.08

J12

1000 0.75 17.65 2.24 86.84 0.02

3000 0.31 17.65 1.40 93.97 0.06

5000 0.17 10.00 0.97 96.53 0.10

J14

1000 1.02 15.79 2.40 80.76 0.03

3000 0.43 8.33 1.38 90.38 0.07

5000 0.32 8.33 1.22 92.92 0.11

J16

1000 1.30 14.29 2.47 74.18 0.03

3000 0.63 9.68 1.70 86.18 0.08

5000 0.44 9.68 1.39 90.00 0.12

J18

1000 1.59 18.18 2.93 71.01 0.03

3000 0.79 12.50 1.88 81.88 0.08

5000 0.63 11.11 1.63 84.96 0.13

J20

1000 2.08 17.65 3.31 64.08 0.04

3000 1.08 14.71 2.26 76.71 0.10

5000 0.87 10.71 1.97 80.32 0.15

J30

1000 16.65 150.00 26.91 48.74 0.06

3000 15.36 142.31 25.80 51.62 0.13

5000 14.77 138.46 25.08 52.35 0.21
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when the J20 set of instances is considered (Fig. 7 and
Table 8).

4.3. Performance of the new MM-HGA for the MRCPSP

In order to test the performance of the hybrid GA
proposed, the J10, J12, J14, J16, J18, J20 and J30 PSPLIB
set of instances are used. Each set of instances is solved
with the computational effort of 1000, 3000 and 5000
schedules generated. Table 8 shows for each experiment
the average deviation with respect to the optimal solu-
tion/critical path based lower bound (Av.Dev.OS/
Av.Dev.LB), the maximum (Max.) and the standard devia-
tion (St.Dev.), the percentage of optimum solutions found
(%Optimum) and the CPU time required in seconds.

Instances used in the evaluation reported in Table 9
can be considered as small-sized projects. Therefore in
order to evaluate the performance of the MM-HGA when
solving medium- and large-sized project instances we
have designed two additional sets of instances J60 and
J120. Both sets of instances have been generated using the
instance generator ProGen and have similar characteris-
tics as those of previously existing sets. From these results
is concluded the good behaviour of the algorithm even
when the project size increases (Table 10).

4.4. Performance of the new hybrid GA against the best

metaheuristic algorithms published

In order to compare the performance of the new
HGA with that of the best algorithms published so far, we
have solved the multimode J10 set of instances with the
MM-HGA developed in this work considering a computa-
tional effort of 1000, 2000, 3000, 4000, 5000 and 6000
schedules generated. Results are drawn in Table 11 where
the average deviation with respect to the optimal solution,
the percentage of optimal solutions found, the computa-
tional effort (measured as the number of schedules
generated) and the mean CPU-time in seconds are
reported. We can see that the hybrid GA proposed
(MM-HGA) outperforms the heuristic and metaheuristic
methods previously published in the literature when the
same computational effort of 6000 schedules generated is
considered. The MM-HGA obtains an average deviation
with respect to the Optimum of 0.04% while the next best
algorithm obtains a 0.1%. It is interesting to point out that
MM-HGA outperforms the best algorithm published so far
even with half of the computational effort. The algorithm
maintains the rate of improvement and it is close to be
optimal when the computational effort of 6000 schedules
is computed (Table 11).
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Table 10
Performance of the MM-HGA with the J60 and J120 set of instances and a computational effort of 1000, 3000 and 5000 schedules generated.

# Schedules J60 J120

Av.Dev.LB (%) Max. St. Dev. CPU-time (s) Av.Dev.LB (%) Max St. Dev. CPU-time (s)

1000 16.57 156.67 26.77 0.12 16.62 154.00 26.54 0.41

3000 14.77 156.67 25.08 0.27 14.48 148.00 24.61 0.91

5000 14.10 143.33 24.45 0.42 13.65 142.00 23.71 1.40

Table 11
New heuristic solution method vs. other heuristics and metaheuristics published in the literature (J ¼ 10 and different number of schedules generated).

Heuristic Av.Dev.OS (%) Optimum (%) # Schedules CPU-time (s)

MM-HGA 0.04 99.07 6000 0.10

MM-HGA 0.06 98.51 5000 0.08

MM-HGA 0.08 98.13 4000 0.07

MM-HGA 0.08 98.13 3000 0.05

Hartmann (2001) 0.10 98.10 6000 –

MM-HGA 0.14 96.83 2000 0.03

Alcaraz et al. (2003) 0.19 96.50 6000 0.19a

Bouleimen and Lecoq (2003) 0.21 96.30 – 19.3b

MM-HGA 0.26 95.34 1000 0.02

Kolisch and Drexl (1997) 0.50 91.80 6000 –

Özdamar (1999) 0.86 88.10 6000 –

a Pentium III with 1.13 GHz and 256 MB RAM.
b Pentium with 100 MHz and 32 Mbytes of RAM.

Table 12
Comparison with other heuristics.

Author (year) Set of instances

J10 J12 J14 J16 J18 J20

MM-HGA 0.06 0.17 0.32 0.44 0.63 0.87

Alcaraz et al. (2003) 0.24 0.73 1.00 1.12 1.43 1.91

Józefowska et al. (2001) 1.16 1.73 2.6 4.07 5.52 6.74

% Deviation from optimal solution (5000 schedules).
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Besides, a more detailed analysis has been carried out
also considering the remaining of the standard sets.
In such a case, the comparison is made regarding data
reported by Alcaraz et al. (2003) and Tormos and
Lova, 2001. In all cases, the computational effort corre-
sponds to 5000 schedules generated. Results appear in
Table 12 and evidence the outperformance of the
MM-HGA proposed algorithm regardless of the set of
instances used.

Finally, the performance analysis of the MM-HGA has
been extended to the medium to large Boctor’s multimode
project instances. These instances are divided into two
sets. One set with projects of 50 non-dummy activities
and the other one includes project instances of 100 non-
dummy activities (Boctor, 1993, 1996a, b). The main
characteristic of these sets of instances is the fact that
both of them only consider renewable resources. The
performance of the MM-HGA is compared with the GA
proposed by Alcaraz et al. (2003) clearly improving its
results (Table 13) in all cases considered.
5. Conclusions

Applications of project scheduling can be found in
diverse economic contexts such as construction engineer-
ing, software development, research and development
projects, etc. Moreover, project scheduling is important for
make-to-order companies where the capacities have been
reduced in order to meet lean management concepts.
Concretely, due to steadily shortening product life cycles,
globalization of markets and decreasing profit margins,
industrial projects have to be realized facing tight time
and resource constraints that can be modelled as RCPSP. In
this highly competitive environment, the development of
efficient algorithms able to deal with different execution
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Table 13
Comparison with other heuristics for Boctor’s instances.

Algorithm J50 J100

Av.Dev.LB (%) CPU-time (s) Av.Dev.LB (%) # Sched CPU-time (s)

MM-HGA 23.70 0.50 24.85 5000 1.46

MM-HGA 24.89 0.11 26.96 1000 0.34

MM-HGA 25.34 0.07 27.20 500 0.26

Alcaraz et al. (2003) 26.52 0.95a 29.16 5000a 2.05

Alcaraz et al. (2003) 33.83 0.186a 41.85 1000a 0.392

a Pentium III with 1.13 GHz and 256 MB RAM.
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modes for activities shows up as very powerful tools for
the decision making process.

Indeed, the MRCPSP is a very challenging problem and
in this paper a hybrid GA has been developed that is able
to efficiently solve this problem. Firstly, a representation
of individuals is proposed that combines both the project
characteristics (activities and execution modes) and the
key aspects concerning with the generation of the related
schedule (schedule generation scheme and direction of
application). One of the steps in the solving process of
projects involving both renewable and non-renewable
resources with limited availabilities is the mode assign-
ment in the initial solution. For this purpose, a new
parameter has been designed and its efficiency stated. In
the evolution process characteristic of the GAs, fitness
function plays a crucial role. A new fitness function has
been developed that overcomes the drawbacks of the
existing ones. Its effectiveness has been assessed against
those of the fitness functions previously developed and
the test allows concluding its better behaviour. On the
other hand, an improving method able to drastically
reduce the project duration has been presented. The effect
of the use of the improving method has been analysed and
results reported point out its crucial role in the final
setting of the algorithm. In fact, the hybrid GA has
been tested against the best algorithms published so
far and using as benchmark the well known set of
instances of PSPLIB as well as the set of projects only
including renewable resources reporting in all cases very
good results.
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