
Insurance: Mathematics and Economics 49 (2011) 145–154
Contents lists available at ScienceDirect

Insurance: Mathematics and Economics

journal homepage: www.elsevier.com/locate/ime

Optimal time-consistent investment and reinsurance policies for mean-variance
insurers✩

Yan Zeng a, Zhongfei Li b,∗
a Lingnan (University) College, Sun Yat-sen University, Guangzhou 510275, PR China
b Research Center for Financial Engineering and Risk Management, Sun Yat-sen University, Guangzhou 510275, PR China

a r t i c l e i n f o

Article history:
Received October 2010
Received in revised form
January 2011
Accepted 4 January 2011

MSC:
IM52
IE13
IB91

Keywords:
Time-consistency
Continuous-time investment and
reinsurance choice

Mean-variance criterion
Insurer
Hamilton–Jacobi-Bellman equation

a b s t r a c t

This paper investigates the optimal time-consistent policies of an investment-reinsurance problem and
an investment-only problem under the mean-variance criterion for an insurer whose surplus process is
approximated by a Brownianmotionwith drift. The financial market considered by the insurer consists of
one risk-free asset and multiple risky assets whose price processes follow geometric Brownian motions.
A general verification theorem is developed, and explicit closed-form expressions of the optimal polices
and the optimal value functions are derived for the two problems. Economic implications and numerical
sensitivity analysis are presented for our results. Our main findings are: (i) the optimal time-consistent
policies of both problems are independent of their corresponding wealth processes; (ii) the two problems
have the same optimal investment policies; (iii) the parameters of the risky assets (the insurancemarket)
haveno impact on the optimal reinsurance (investment) policy; (iv) the premiumreturn rate of the insurer
does not affect the optimal policies but affects the optimal value functions; (v) reinsurance can increase
the mean-variance utility.
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1. Introduction

Insurers can control their risks by means of some business
activities, such as investing in a financial market, purchasing
reinsurance, and acquiring new business (acting as a reinsurer for
other insurers). As a result, there have arisen many optimization
problems with various objectives in insurance risk management.
This topic has been extensively investigated in the literature. For
example, Browne (1995) obtains the optimal investment strategies
for an insurer who maximizes the expected utility of the terminal
wealth or minimizes the ruin probability, where the surplus
process of the insurer is modeled by a drifted Brownian motion.
Yang and Zhang (2005) study the optimal investment policies for
an insurer who maximizes the expected exponential utility of the
terminal wealth or maximizes the survival probability, where the
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surplus process is driven by a jump–diffusion process. Further,
Xu et al. (2008), Cao and Wan (2009) and Gu et al. (2010) study
the optimal investment-reinsurance policies for an insurer who
maximizes the expected utility of the terminal wealth in different
situations.

Recently, many scholars consider the optimal investment
and/or reinsurance policies for insurers under the mean-variance
criterion, which is pioneered by Markowitz (1952) and has long
been recognized as the milestone of modern portfolio theory.
For example, Bäuerle (2005) considers the optimal proportional
reinsurance/new business problem under the mean-variance
criterion where the surplus process is modeled by the classical
Cramér–Lundberg (CL) model, and derives the optimal policy in
closed-form. Delong and Gerrard (2007) consider two optimal
investment problems for an insurer: one is the classical mean-
variance portfolio selection and the other is the mean-variance
terminal objective involving a running cost penalizing deviation of
the insurer’s wealth from a specified profit-solvency target. They
assume that the claim process is a compound Cox process with the
intensity described by a drifted Brownian motion and the insurer
invests in a financial market consisting of a risk-free asset and a
risky asset whose price is driven by a Lévy process. Bai and Zhang
(2008) study the optimal investment-reinsurance policies for an
insurer under the mean-variance criterion by the linear quadratic
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(LQ) method and the dual method, where they assume that the
surplus of the insurer is described by a CL model and a diffusion
approximation (DA) model respectively. Zeng et al. (2010) assume
that the surplus of an insurer is modeled by a jump–diffusion
process, and derive the optimal investment policies explicitly
under the benchmark andmean-variance criteria by the stochastic
maximum principle.

It is apparent to all that the mean-variance criterion lacks the
iterated-expectation property, which results in that continuous-
time/multi-period mean-variance problems are time-inconsistent
in the sense that the Bellman Optimality Principle does not hold
and hence the traditional dynamic programming approach cannot
be directly applied. The optimal policies to dynamicmean-variance
problems considered in all the literature mentioned above are
derived under the implicit assumption that the decision makers
pre-commit themselves to follow in the future the policies chosen
at the initial time, namely, the decision makers initially choose
policies to maximize their objective functions at time 0 and
thereafter do not deviate from these policies. Such policies are so-
called pre-commitment policies, which are time-inconsistent in
that they are optimal only when sitting at the initial time.

However, time consistency of policies is a basic requirement
for rational decision making in many situations. A decision maker
sitting at time t would consider that, starting from t + 1t , she will
follow the policy that is optimal sitting at time t + 1t . Namely,
the optimal policy derived at time t should agree with the optimal
policy derived at time t + 1t . Strotz (1956) first analytically
formalizes time inconsistency and works on time-consistent
policies for time-inconsistent problems. He proposes that time-
inconsistent problems can be solved either by pre-commitment
policies or by time-consistent policies. In very recent times, time-
inconsistent stochastic control problems have attracted much
attention. Bjök and Murgoci (2009) develop a general theory for
Markovian time-inconsistent stochastic control problems with
fairly general objectives. They derive an extension of the standard
Hamilton–Jacobi–Bellman (HJB) equation in the form of a system
of non-linear PDFs. Wang and Forsyth (submitted for publication)
study the time-consistent policy and the pre-commitment policy
of a continuous-time mean-variance asset allocation problem and
develop a numerical scheme which can determine the optimal
policy whatever type of constraint is applied to the investment
behavior. Bjök et al. (2010) consider a mean-variance portfolio
optimization problem with state-dependent risk aversion in a
continuous-time setting. Basak and Chabakauri (2010) study a
dynamic mean-variance asset-allocation problemwithin aWiener
driven framework and derive the explicit time-consistent policy by
solving the extended HJB equation.

As far as we know, there is no literature on the optimal
investment and reinsurance problems for mean-variance insurers
who are concerned about the time-consistent policies. In this
paper we try to pioneer this study. Specifically, we consider the
optimal time-consistent policies of an investment-reinsurance
problem and an investment-only problem for a mean-variance
insurer. In the first problem, the insurer is allowed to invest in
a financial market and purchase proportional reinsurance/acquire
new business. In the second problem, the insurer is only allowed
to invest in a financial market but not allowed to purchase
proportional reinsurance/acuqire new business. In both problems,
the insurer is of mean-variance preference, the surplus process
of the insurer is modeled by a DA model, and the financial
market consists of one risk-free asset and multiple risky assets
whose price processes are driven by geometric Brownian motions.
We develop a general verification theorem and derive closed-
form expressions for the optimal time-consistent policies and the
optimal value functions of the two problems. We also present
economic implications of our results and provide sensitivity
analysis by a numerical example.
The rest of this paper is organized as follows. Section 2 describes
the model and some assumptions. Section 3 formulates the opti-
mization problems and gives a general verification theorem. The
investment-reinsurance problem and the investment-only prob-
lem under the mean-variance criterion without pre-commitment
are solved in Section 4. Section 5 provides a numerical sensitivity
analysis and Section 6 concludes the paper.

2. Model and assumptions

We start with a filtered complete probability space (Ω, F ,
{Ft}0≤t≤T , P ), where T is a finite and positive constant, represent-
ing the time horizon, Ft stands for the information available at
time t , and any decision made at time t is based upon such infor-
mation. All stochastic processes introduced below are supposed to
be well-defined and adapted processes in this space.

2.1. Surplus process

We consider an insurer whose surplus process is modeled by a
DA model. To understand the DA model better, it is advantageous
to start from the classical CL model. In the CL model the claims
arrive according to a homogeneous Poisson process {Nt} with
intensity λ; the individual claim sizes are Zi, i = 1, 2, . . . , which
are assumed to be independent of {Nt} and be independent and
identically distributed (i.i.d.) positive random variables with finite
first and second-ordermoments given byµ∞ andσ 2

∞
, respectively.

Then the surplus process of the insurer without reinsurance and
investment follows

dR(t) = cdt − d
Nt−
i=1

Zi, (1)

where c is the premium rate which is assumed to be calculated
according to the expected value principle, i.e., c = (1 + η)λµ∞,
and here η > 0 is the relative safety loading of the insurer. By
Grandll (1991), the CLmodel can be approximated by the following
diffusion model

dR(t) = µdt + σ0dW0(t), (2)

where µ = ηλµ∞ can be regarded as the premium return rate
of the insurer, σ 2

0 = λσ 2
∞

measures the volatility of the insurer’s
surplus, {W0(t)} is a standard Brownian motion. It is worth
pointing out that the DA model (2) works well for large insurance
portfolios, where an individual claim is relatively small compared
to the size of surplus. The DA model has been used in much
existing literature, for example, Browne (1995), Promislow and
Young (2005), Gerber and Shiu (2006), Bai and Guo (2008), Cao and
Wan (2009), Chen et al. (2010), Gu et al. (2010), and so on.

In addition, the insurer is allowed to purchase proportional
reinsurance or acquire new business (for example, acting as a
reinsurer of other insurers, see Bäuerle (2005)) at each moment
in order to control insurance business risk. The proportional
reinsurance/new business level is associated with the value of risk
exposure a(t) ∈ [0, +∞) at any time t ∈ [0, T ]. a(t) ∈ [0, 1]
corresponds to a proportional reinsurance cover and shows that
the cedent should divert part of the premium to the reinsurer at the
rate of (1−a(t))θ , where θ can be regarded as the premium return
rate of the reinsurer. Meanwhile, the insurer should pay 100a(t)%
while the rest 100(1 − a(t))% is paid by the reinsurer for each
claim occurring at time t . The proportional reinsurance is called
cheap if θ = µ while being not cheap if θ > µ. a(t) ∈ (1, +∞)
corresponds to acquiring new business. For convenience, we call
the process of risk exposure {a(t) : t ∈ [0, T ]} as a reinsurance
policy. When a reinsurance policy {a(t) : t ∈ [0, T ]} is adopted,
the corresponding DA dynamics for the surplus process becomes

dR(t) = [µ − (1 − a(t))θ ]dt + σ0a(t)dW0(t). (3)
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2.2. Financial market

The financial market in the present paper is assumed to consist
of one risk-free asset (bond or bank account) and n risky assets
(stocks or mutual funds). Assume that the price process S0(t) of
the risk-free asset evolves according to the ordinary differential
equation (ODE)

dS0(t) = r0(t)S0(t)dt, S0(0) = s0, (4)

where s0 is the initial price; r0(t) is a positive continuous bounded
deterministic function and represents the risk-free rate. And
assume that the price processes Si(t) of the ith risky asset (i =

1, 2, . . . , n) follows the geometric Brownian motion

dSi(t) = Si(t)


ri(t)dt +

k−
j=1

σij(t)dWj(t)


, Si(0) = si, (5)

where si is the initial price of the ith risky asset; ri(t) and σij(t)
are positive continuous bounded deterministic functions;W (t) :=

(W1(t), . . . ,Wk(t))′ is a k-dimensional standard Brownianmotion.
Here the superscript ‘‘′’’ denotes the transpose of amatrix or vector
and k ≥ n. Assume that the process {W0(t)} is independent of
the process {W (t)} and ri(t) > r0(t) for each i = 1, 2, . . . , n and
t ∈ [0, T ].

2.3. Wealth process

Assume that the insurer can dynamically purchase proportional
reinsurance/acquire new business and invest in the financial
market over the time interval [0, T ] and that there is no transaction
cost in the financial market and the insurance market. A policy is
a stochastic process π = {(aπ (t), bπ (t)) : t ∈ [0, T ]}, where
aπ (t) corresponds to the value of risk exposure at time t , bπ (t) :=

(bπ
1 (t), bπ

2 (t), . . . , bπ
n (t))′, bπ

i (t) is the dollar amount invested in
the ith risky asset at time t . The dollar amount invested in the
risk-free asset at time t is then Xπ (t) −

∑n
i=1 b

π
i (t), where Xπ (t)

is the corresponding wealth process when a policy π is adopted.
We assume that the initial wealth of the insurer is x0. Then the
dynamics for Xπ (t) is given by

dXπ (t) = [r0(t)Xπ (t) + θaπ (t) + r(t)′bπ (t) + m]dt

+ σ0aπ (t)dW0(t) + bπ (t)′σ(t)dW (t), (6)

with Xπ (0) = x0, wherem = µ − θ, r(t) = (r1(t) − r0(t), r2(t) −

r0(t), . . . , rn(t) − r0(t))′, σ (t) = (σij(t))n×k. Moreover, denote
Σ(t) = σ(t)σ (t)′ and assume that Σ(t) is nonsingular for all
t ∈ [0, T ]. In this paper, a policy π = {(aπ (t), bπ (t))′ : t ∈ [0, T ]}

is said to be admissible if it satisfies the following conditions:
(i) ∀t ∈ [0, T ], (aπ (t), bπ (t)) is Ft progressively measurable and
aπ (t) ≥ 0; (ii)

 T
0 [aπ (t)2σ 2

0 + bπ (t)′Σ(t)bπ (t)]dt < +∞; (iii) the
stochastic different Eq. (6) has a unique solution Xπ on [0, T ].
Denote by Π1 the set of all admissible policies and Π2 = {π ∈

Π1 : aπ (t) ≡ 1, ∀t ∈ [0, T ]}.

3. Problems formulation and verification theorem

In this paper, we consider two optimization problems for the
insurer denoted by (PIR) and (PI), where (PIR) is the investment-
reinsurance problem and (PI) is the investment-only problem.
For (PIR), we assume that the insurer is allowed to invest
in the financial market described in Section 2.2 and purchase
proportional reinsurance/acquire new business. For (PI), we
assume that the insurer only invests in the financial market
rather than purchases reinsurance/acquires new business. In both
problems, the insurer adopts the mean-variance criterion to
choose the optimal policies. Quite different from the existing
literature in this field, this paper aims to obtain the optimal time-
consistent policies instead of the pre-commitment policies for the
insurer.

In order to understand the mean-variance optimization prob-
lem without pre-commitment well, we start firstly from the
mean-variance optimization problem with pre-commitment. A
mean-variance optimization problem with pre-commitment can
be described as maximizing

J0(0, X0, π) = E0,x0 [X
π (T )] −

γ

2
Var0,x0 [X

π (T )] (7)

over all admissible policies, where Et,x[·] = E[·|Xπ (t) = x], γ
is a positive constant representing the degree of risk aversion of
the insurer. The term ‘‘pre-commitment’’ involves the target given
implicitly by considering the variance as the quadratic derivation
from the target E[Xπ (T )], i.e., the insurer pre-commits to herself to
the target E0,x0 [X

π (T )] determined at time 0 but does not update
her target at subsequent dates.

However, for themean-variance optimization problemwithout
pre-commitment, the insurer updates her target at each state (t, x)
and the value function is given by

J(t, x, π) = Et,x[Xπ (T )] −
γ

2
Vart,x[Xπ (T )]

= Et,x[Xπ (T )] −
γ

2


Et,x[Xπ (T )2] − (Et,x[Xπ (T )])2


. (8)

The target of the insurer is to find the optimal value function

V (t, x) = sup
π∈Π

J(t, x, π), (9)

and the optimal policy π∗
= {(aπ∗

(t), bπ∗

(t)), t ∈ [0, T ]} such
that V (t, x) = J(t, x, π∗), where Π = Π1 for (PIR) and Π = Π2
for (PI).

We are now going to provide a verification theorem for the
mean-variance problem (9) without pre-commitment. To gener-
alize our verification theorem, we consider a general optimization
problem of the form

V (t, x) = sup
π∈Π

f (t, x, yπ (t, x), zπ (t, x)), (10)

where f : [0, T ] × R3
→ R is a function in C1,2,2,2, and

yπ (t, x) = Et,x[Xπ (T )], (11)

zπ (t, x) = Et,x[Xπ (T )2]. (12)

In particular, if we let

f (t, x, y, z) = y −
γ

2
(z − y2), (13)

then the problem (10) reduces to our concerned mean-variance
optimization problem without pre-commitment, (9). In addition,
if we set

f (t, x, y, z) = y −
γ (t, x)

2
(z − y2),

then the problem (10) reduces to the mean-variance optimization
problem without pre-commitment but with state-dependent risk
aversion coefficient γ (t, x). If we let

f (t, x, y, z) = y −
γ (t, x)

2
(z − y2)

1
2 ,

then the problem (10) reduces to the mean-standard derivation
optimization problem without pre-commitment but with state-
dependent risk aversion coefficient.
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Theorem 1 (Verification Theorem). For the optimization prob-
lem (10), if there exist three real value functions F ,G,H : [0, T ] ×

R → R satisfying the following extended HJB system: ∀(t, x) ∈

[0, T ] × R,

sup
π∈Π


Ft − ft + (Fx − fx)[r0(t)x + θaπ (t) + r(t)′bπ (t) + m]

+
1
2
(Fxx − U)[aπ (t)2σ 2

0 + bπ (t)′Σ(t)bπ (t)]


= 0, (14)

F(T , x) = f (T , x, x, x2), (15)

Gt + Gx[r0(t)x + θaπ∗

(t) + r(t)′bπ∗

(t) + m]

+
1
2
Gxx[aπ∗

(t)2σ 2
0 + bπ∗

(t)′Σ(t)bπ∗

(t)] = 0, (16)

G(T , x) = x, (17)

Ht + Hx[r0(t)x + θaπ∗

(t) + r(t)′bπ∗

(t) + m]

+
1
2
Hxx[aπ∗

(t)2σ 2
0 + bπ∗

(t)′Σ(t)bπ∗

(t)] = 0, (18)

H(T , x) = x2, (19)

where

U(f , y, z) = fxx + 2fxyyx + 2fxzzx

+ fyyy2x + 2fyzyxzx + fzzz2x (20)

with y = yπ (t, x) and z = zπ (t, x) for short, and

π∗
= arg sup

π∈Π

{Ft − ft

+ (Fx − fx)[r0(t)x + θaπ (t) + r(t)′bπ (t) + m]

+
1
2
(Fxx − U)[aπ (t)2σ 2

0 + bπ (t)′Σ(t)bπ (t)]}, (21)

then V (t, x) = F(t, x), yπ∗

(t, x) = G(t, x), zπ∗

(t, x) = H(t, x), and
the optimal policy is given by π∗.

Proof. See Appendix. �

The verification theorem is suitable for (PIR) if replace Π

with Π1, and for (PI) if replace Π and aπ (t) with Π2 and 1,
respectively.

4. Solving (PIR) and (PI )

This section works on solving the investment-reinsurance
optimization problem (PIR) and the investment-only optimization
problem (PI) under the mean-variance criterion without pre-
commitment. In this case, the function f is given by (13), and hence
we have

fy = 1 + γ y, fyy = γ , fz = −
γ

2
,

ft = fx = fxx = fxy = fxz = fyz = fzz = 0.
(22)

4.1. Constructing the solution of investment-reinsurance problem
(PIR)

In this subsection, the solution of the investment-reinsurance
optimization problem (PIR) is constructed. Assume that there exist
three real value functions F(t, x),G(t, x) and H(t, x) satisfying the
extended HJB system (14)–(21) and U > Fxx for all (t, x) ∈ [0, T ]×

R. According to Theorem1,we knowby inserting (22) into (20) that

U(f , yπ∗

, zπ∗

) = U(f ,G,H) = γG2
x , (23)
and by (10) and (13) that

F(t, x) = V (t, x) = f

t, x, yπ∗

, zπ∗


= Et,x[Xπ∗

(T )] −
γ

2


Et,x[Xπ∗

(T )2] − (Et,x[Xπ∗

(T )])2


= G(t, x) −
γ

2
(H(t, x) − G(t, x)2),

which tells us that

H(t, x) = G(t, x)2 +
2
γ

(G(t, x) − F(t, x)). (24)

By differentiating the inside of the bracket of (14) with respect
to aπ (t) and bπ (t) respectively, and by using (22) and (23), we can
find the optimal policy

π∗
= (aπ∗

(t), bπ∗

(t)), aπ∗

(t) = −
θFx

σ 2
0 (Fxx − γG2

x)
,

bπ∗

(t) = −
Σ(t)−1r(t)Fx
Fxx − γG2

x
,

(25)

with

Ft + (r0(t)x + m)Fx −
l(t)2F 2

x

2(Fxx − γG2
x)

= 0, (26)

Gt +


r0(t)x + m −

l(t)2Fx
Fxx − γG2

x


Gx +

l(t)2F 2
x Gxx

2(Fxx − γG2
x)

2
= 0, (27)

where l(t)2 = θ2/σ 2
0 + r(t)′Σ(t)−1r(t).

In addition, given the linear structure of the dynamics, as well
as the boundary conditions, it is natural to guess that

F(t, x) = A(t)x + B(t), A(T ) = 1, B(T ) = 0, (28)
G(t, x) = α(t)x + β(t), α(T ) = 1, β(T ) = 0. (29)

The partial derivatives are

Ft = Atx + Bt , Fx = A(t), Fxx = 0,
Gt = αtx, Gx = α(t), Gxx = 0.

Inserting them into (25)–(27), we have

π∗
= (aπ∗

(t), bπ∗

(t)), aπ∗

(t) =
θA(t)

γ σ 2
0 α(t)2

,

bπ∗

(t) =
Σ(t)−1r(t)A(t)

γ α(t)2
,

(30)

Atx + Bt + (r0(t)x + m)A(t) +
l(t)2A(t)2

2γα(t)2
= 0, (31)

αtx + βt + (r0(t)x + m)α(t) +
l(t)2A(t)
γ α(t)

= 0. (32)

By separating the variables with and without x, we can derive the
following system of ODEs

At + r0(t)A(t) = 0, A(T ) = 1;

Bt + mA(t) +
l(t)2A(t)2

2γα(t)2
= 0, B(T ) = 0;

αt + r0(t)α(t) = 0, α(T ) = 1;

βt + mα(t) +
l(t)2A(t)
γ α(t)

= 0, B(T ) = 0.
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Then we can easily obtain

A(t) = e
 T
t r0(s)ds, (33)

B(t) = m
∫ T

t
e
 T
u r0(s)dsdu +

1
2γ

∫ T

t
l(s)2ds, (34)

α(t) = e
 T
t r0(s)ds, (35)

β(t) = m
∫ T

t
e
 T
u r0(s)dsdu +

1
γ

∫ T

t
l(s)2ds. (36)

Inserting (33) and (35) into (30) leads to the optimal policy

π∗
= (aπ∗

(t), bπ∗

(t)), aπ∗

(t) =
θ

γ σ 2
0
e−

 T
t r0(s)ds,

bπ∗

(t) =
Σ−1(t)r(t)

γ
e−

 T
t r0(s)ds.

(37)

Substituting (33) and (34) into (28) yields

F(t, x) = xe
 T
t r0(s)ds + m

∫ T

t
e
 T
u r0(s)dsdu

+
1
2γ

∫ T

t
l(s)2ds. (38)

Inserting (35) and (36) into (29), we can get

G(t, x) = xe
 T
t r0(s)ds + m

∫ T

t
e
 T
u r0(s)dsdu

+
1
γ

∫ T

t
l(s)2ds. (39)

According to (24), (38) and (39), we have

H(t, x) =

[
xe

 T
t r0(s)ds + m

∫ T

t
e
 T
u r0(s)dsdu +

1
γ

∫ T

t
l(s)2ds

]2

+
1
γ 2

∫ T

t
l(s)2ds. (40)

According to the above results and Theorem 1, we have the
following theorem.

Theorem 2. For the investment-reinsurance problem (PIR), the
optimal policy is given by (37); the optimal value function is given
by (38); the expected terminalwealth under the optimal policy is given
by (39); and the variance of the terminal wealth under the optimal
policy is given by

Vart,x[Xπ∗

(T )] =
2
γ

(G(t, x) − F(t, x)) =
1
γ 2

∫ T

t
l(s)2ds. (41)

Remark 1. We find that (1) the optimal policy does not depend
on the wealth process Xπ∗

(t); (2) the premium return rate of the
insurerµhas no impact on the optimal policy but has impact on the
value function; (3) the parameters of risky assets have no influence
on the optimal reinsurance policy aπ∗

(t), and the parameters of the
insurancemarket have no impact on the optimal investment policy
bπ∗

(t); (4) when µ = θ = σ0 = 0 and the parameters of the risk-
free asset and risky assets are constants, our results are the same
as Proposition 5.1 in Bjök and Murgoci (2009).

Remark 2. From (39) and (41), we can get the relationship
between the expectation and the variance of the terminal wealth
under the optimal policy of the problem (PIR) as below:
Et,x[Xπ∗

(T )] = xe
 T
t r0(s)ds + m

∫ T

t
e
 T
u r0(s)dsdu

+


Vart,x[Xπ∗

(T )]

∫ T

t
l(s)2ds.

This relationship is known as the efficient frontier of the problem
(PIR) at time t , as in the modern portfolio theory. The efficient
frontier is a straight line in the mean-standard deviation plane,
no matter at what time. Evidently, at any time, the cheaper the
reinsurance (i.e., the large them) is, the better (i.e., the higher) the
efficient frontier will be. This is consistent with our intuition.

4.2. Constructing the solution of investment-only problem (PI)

This subsection is devoted to constructing the solution of
the investment-only optimization problem (PI) under the mean-
variance criterion without pre-commitment. In this problem, the
insurer neither purchases reinsurance nor acquires new business,
that is to say, the value of risk exposure aπ (t) ≡ 1 for all t ∈ [0, T ]

and the set of all admissible policies is Π2. When an admissible
policy π ∈ Π2 is adopted, the dynamics for the wealth process
Xπ (t) is given by

dXπ (t) = [r0(t)Xπ (t) + µ + r(t)′bπ (t)]dt

+ σ0dW0(t) + bπ (t)′σ(t)dW (t), Xπ (0) = x0. (42)

Similar to the previous subsection, for the investment-only
problem we can derive the optimal investment policy and three
real value functions F̃ , G̃, H̃ satisfying (14)–(21) in Theorem 1,
which are described as below:

π∗
= (1, bπ∗

(t)), bπ∗

(t) =
Σ(t)−1r(t)

γ
e−

 T
t r0(s)ds, (43)

F̃(t, x) = xe
 T
t r0(s)ds + µ

∫ T

t
e
 T
u r0(s)dsdu

−
γ σ 2

0

2

∫ T

t
e
 T
u 2r0(s)dsdu

+
1
2γ

∫ T

t
r(s)′Σ(s)−1r(s)ds, (44)

G̃(t, x) = xe
 T
t r0(s)ds + µ

∫ T

t
e
 T
u r0(s)dsdu

+
1
γ

∫ T

t
r(s)′Σ(s)−1r(s)ds, (45)

H̃(t, x) =


xe

 T
t r0(s)ds + µ

∫ T

t
e
 T
u r0(s)dsdu

+
1
γ

∫ T

t
r(s)′Σ(s)−1r(s)ds

2

+
1
γ 2

∫ T

t
r(s)′Σ(s)−1r(s)ds

+ σ 2
0

∫ T

t
e
 T
u 2r0(s)dsdu. (46)

According to Theorem 1, we have the following result.

Theorem 3. For the investment-only problem (PI), the optimal policy
is given by (43); the optimal value function is given by (44); the
expected terminal wealth under the optimal policy is given by (45);
and the variance of the terminal wealth under the optimal policy is
given by
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Vart,x[Xπ∗

(T )] =
1
γ 2

∫ T

t
r(s)′Σ(s)−1r(s)ds

+ σ 2
0

∫ T

t
e
 T
u 2r0(s)dsdu. (47)

Remark 3. (1) The optimal investment policy bπ∗

(t) of the
investment-only problem (PI) is the same as that of the
investment-reinsurance problem. This property implies that the
optimal investment and reinsurance strategy can be separated
and the economic implications on the optimal investment strategy
stated after Theorem 2 apply to this model as well. (2) When µ =

σ0 = 0 and the parameters of the risk-free asset and risky assets
are constants, our results are again the same as Proposition 5.1 of
Bjök and Murgoci (2009).

Remark 4. From (45) and (47), we can get the relationship
between the expectation and the variance of the terminal wealth
under the optimal policy of the problem (PI) as below: Et,x[Xπ∗

(T )]

is given in Box I where Vart,x[Xπ∗

(T )] ≥ σ 2
0

 T
t e

 T
u 2r0(s)dsdu, which

is guaranteed by (47). This efficient frontier of the investment-only
problem (PI) at time t is no longer a straight line but a hyperbola in
the mean-standard derivation plane. It is a straight line only when
σ0 = 0. This reveals that due to the existence of the volatility σ0 of
the insurer’s surplus process, the risk of insurance business cannot
be completely hedged by only investment.

Corollary 1. The optimal value function of the investment-reinsurance
problem (PIR) is larger than that of the investment-only problem (PI).
In other words, reinsurance can increase mean-variance utility.

Proof. According to (38) and (44), it follows that

F(t, x) − F̃(t, x) =
1
2γ

∫ T

t

θ2

σ 2
0
du − θ

∫ T

t
e
 T
u r0(s)dsdu

+
γ σ 2

0

2

∫ T

t
e
 T
u 2r0(s)dsdu

=
1
2γ

∫ T

t


θ

σ0
− γ σ0e

 T
u r0(s)ds

2

du ≥ 0. �

5. Numerical sensitivity analysis

In this section, we provide a numerical example to analyze
how the parameters of the insurance market and the coefficient of
the insurer’s risk aversion impact on the optimal time-consistent
policies, the optimal value functions and the efficient frontiers
of the investment-reinsurance problem and the investment-only
problem. For convenience but without loss of generality, this
example only considers one risky asset and the parameters of the
financial market are constants. Throughout the numerical analysis,
unless otherwise stated, the basic parameters are given by: µ =

0.5, σ0 = 1, θ = 0.8, γ = 0.6, r0 = 0.05, r1 = 0.1, σ1 =

0.2, T = 10, t = 0, x0 = 1.

5.1. Impact of parameters on the optimal policies

This subsection works on analyzing how the parameters of
the insurance market and the coefficient of the insurer’s risk
aversion impact on the optimal time-consistent policies of the two
optimization problems.

Fig. 1 shows that the optimal dollar amount invested in the risky
asset and the optimal reinsurance proportion both increase with
respect to (w.r.t.) time t , namely, as time elapses, the insurer should
invest more money in the risky asset and keep more insurance
business. In addition, the subgraph (a) illustrates that the optimal
investment policy bπ∗

(t) is decreasing w.r.t. the coefficient of risk
aversion γ , i.e., the more the insurer dislikes risk, the less amount
the insurer invests in the risky asset; the subgraph (b) tells us
that the optimal reinsurance policy aπ∗

(t) is also decreasing w.r.t.
the coefficient of risk aversion γ , that is to say, the more risk
averse the insurer is, the less insurance business the insurer keeps;
the subgraph (c) displays that the optimal reinsurance policy
aπ∗

(t) decreases with the volatility σ0 of the insurer’s surplus,
namely, when the risk of the insurer’s surplus becomes bigger, the
insurer will keep less insurance business; the subgraph (d) reveals
that the optimal reinsurance policy aπ∗

(t) is increasing w.r.t. the
premium return rate θ of the reinsurer, i.e., the more expensive
the reinsurance is, the more insurance business the insurer keeps.

5.2. Impact of parameters on the optimal value functions

This subsection is devoted to analyzing how the parameters
of the insurance market and the coefficient of the insurer’s
risk aversion impact on the optimal value functions of the two
problems. For simplicity but without loss of generality, we only
consider the optimal value functions at time 0.

The subgraphs (a), (b) and (c) in Fig. 2 all demonstrate that
the optimal value function of the investment-reinsurance problem
(PIR) is larger than that of the investment-only problem (PI) no
matter how much of the values of the parameters, as shown
in Corollary 1. Further, the subgraph (a) indicates that the two
optimal value functions are both decreasing w.r.t. the risk aversion
coefficient γ , namely, the more risk averse the insurer, the smaller
the optimal mean-variance utilities in both two problems. The
subgraph (b) shows that the two optimal value functions are
increasing w.r.t. the premium return rate µ of the insurer, which
implies that the higher the premium return rate of the insurer, the
larger the optimal utilities of the two problems. The subgraph (c)
illustrates that as the volatility σ0 of the insurer’s surplus increases,
the two optimal value functions both decrease, i.e., the more the
surplus risk of the insurer, the less the optimal utilities of the two
problems. The subgraph (d) depicts the impact of the premium
return rate θ of the reinsurer on the optimal value function of
the investment-reinsurance problem (PIR), which shows that as
the premium return rate θ of the reinsurer increases, the optimal
value function first decreases and then increases, implying that
both higher and lower premium return rates of the reinsurer can
yields higher optimal utilities and there is a reinsurance premium
return rate that minimizes the optimal utilities.

5.3. Impact of parameters on the efficient frontiers

In this subsection, we analyze how the parameters of the
insurance market impact on the efficient frontiers of the two
problems.Without loss of generality we only consider the efficient
frontiers at time 0.

In Fig. 3, the subgraph (a) shows that the efficient frontiers of
the two problems both move up as the premium return rate µ
of the insurer increases, that is, the higher the premium return
rate of the insurer, the bigger the expected terminal wealth
with the same variance of the terminal wealth; the subgraph
(b) demonstrates that as the volatility σ0 of the insurer’s surplus
increases, the efficient frontiers of the two problems both move
down, in other words, the larger the insurer’s surplus volatility,
the higher the variance of the terminal wealth with the same
expected terminal wealth; both the subgraphs (a) and (b) show
that the efficient frontier of the investment-reinsurance problem
is better (higher) than that of the investment-only problem; the
subgraph (c) displays that the slope of the efficient frontier for the
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Et,x[Xπ∗

(T )] = xe
 T
t r0(s)ds + µ

∫ T

t
e
 T
u r0(s)dsdu

+


Vart,x[Xπ∗

(T )] − σ 2
0

∫ T

t
e
 T
u 2r0(s)dsdu

 ∫ T

t
r(s)′Σ(s)−1r(s)ds

Box I.
Fig. 1. The impact of parameters on the optimal investment policy and the optimal reinsurance policy.
investment-reinsurance problem is increasing with the premium
return rate θ of the reinsurer, namely, the higher the premium
return rate of the reinsurer, the larger the expected terminal
wealth with the same variance of the terminal wealth.

6. Conclusions

In this paper we study two mean-variance optimization
problems with time-consistent policies for an insurer. One is an
investment-reinsurance problem and the other is an investment-
only problem. In the first problem the insurer is allowed to invest in
a financial market and purchase proportional reinsurance/acquire
new business. In the second problem the insurer is only allowed
to invest in a financial market but not allowed to purchase
reinsurance/acquire new business. The surplus process of the
insurer is assumed to follow a DA model and the financial market
consists of one risk-free asset and multiple risky assets whose
price processes are governed by geometric Brownian motions. A
verification theorem is developed for a more general optimization
problem including the two problems as special cases. And explicit
closed-form expressions for the optimal time-consistent policies
and the optimal value functions of the two problems are derived.
Impact of the parameters of the insurance market and the
coefficient of the insurer’s risk aversion on the optimal policies, the
optimal value functions and the efficient frontiers are analyzed by
a numerical example. Some interesting results are found through
our theoretical derivation and numerical sensitivity analysis.

We are the first to study time-consistent investment and
reinsurance policies for mean-variance insurers. Our work is just
a basic framework. There are still many works needed to be
investigated in this direction. For example, (1) as the insurer
updates its policy continuously in our time-inconsistent problems,
it may be more interesting to consider a time and state-dependent
coefficient of risk aversion, instead of a constant one, in order to
analyze how time-inconsistent risk aversions modify the optimal
policy when the risk aversion is constant. (2) In our problems
the time horizon is pre-given and fixed. It may be interesting to
take into account an uncertain exit time. (3) This paper assumes
that the risky assets’ price processes are driven by diffusion
processes in order to derive closed-form solutions, it is noteworthy
to extend this work to a jump–diffusion case because the real
financial markets are often of such cases. (4) It may be also of
interest to relax the assumption that the risk source of reinsurance
market is independent of the risk source of the financial market.
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b
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Fig. 2. The impact of parameters on the optimal value functions of the investment-reinsurance problem and the investment-only problem.
(5) This paper measures the risk of the terminal wealth by its
variance. One can consider other risk measures, such as Value-
at-Risk. (6) In addition to investment and reinsurance, insurers
may be concernedwith consumption. It is also worth investigating
the optimal investment-consumption-reinsurance policies under
a time-consistent framework.

Appendix

Proof of Theorem 1. We prove it in a similar way as the one of
Kryger and Steffensen (2010).

(i) Consider an arbitrary admissible policy π .
First, we claim that if there exists a real value function Yπ (t, x)

such that ∀(t, x) ∈ [0, T ] × R,

Yπ
t + Yπ

x [r0(t)x + θaπ (t) + r(t)′bπ (t) + m]

+
1
2
Yπ
xx[a

π (t)2σ 2
0 + bπ (t)′Σ(t)bπ (t)] = 0, (48)

Yπ (T , x) = x, (49)

then

Yπ (t, x) = yπ (t, x). (50)

In fact, according to the Itô formula and the Eq. (6), we have

Yπ (t, Xπ (t))

= Yπ (T , Xπ (T )) −

∫ T

t
dYπ (s, Xπ (s))
= Yπ (T , Xπ (T )) −

∫ T

t


Yπ
s + Yπ

x [r0(s)Xπ (s) + θaπ (s)

+ r(s)′bπ (s) + m] +
1
2
Yπ
xx[a

π (s)2σ 2
0

+ bπ (s)′Σ(s)bπ (s)]

ds

−

∫ T

t
Yπ
x [aπ (s)σ0dW0(s) + bπ (s)′σ(s)dW (s)].

Substituting (48) and (49) into the above equation gives

Yπ (t, Xπ (t)) = Xπ (T ) −

∫ T

t
Yπ
x [aπ (s)σ0dW0(s)

+ bπ (s)′σ(s)dW (s)].

Taking conditional expectation on both sides yields

Yπ (t, x) = Et,x[Yπ (t, Xπ (t))] = Et,x[Xπ (T )] = yπ (t, x).

Similarly (replacing Y and y by Z and z, respectively), we can
show the claim that if there exists a real value function Zπ (t, x)
such that ∀(t, x) ∈ [0, T ] × R,

Zπ
t + Zπ

x [r0(t)x + θaπ (t) + r(t)′bπ (t) + m]

+
1
2
Zπ
xx[a

π (t)2σ 2
0 + bπ (t)′Σ(t)bπ (t)] = 0, (51)

Zπ (T , x) = x2, (52)
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Fig. 3. The impact of parameters on the efficient frontiers of the investment-reinsurance problem and the investment-only problem.
then

Zπ (t, x) = zπ (t, x). (53)

Second, given Yπ (t, x) and Zπ (t, x) that satisfy (48)–(49) and
(51)–(52) respectively, we are going to give an expression for

f (T , Xπ (T ), Yπ (T , Xπ (T )), Zπ (T , Xπ (T ))).

From (50) and (53), it follows that

f (t, Xπ (t)), yπ (t, Xπ (t)), zπ (t, Xπ (t))
= f (t, Xπ (t), Yπ (t, Xπ (t)), Zπ (t, Xπ (t))).

Since f ∈ C1,2,2,2, by the Itô formula and the Eq. (6), we have

f

T , Xπ (T ), Yπ (T , Xπ (T )), Zπ (T , Xπ (T ))


= f


t, Xπ (t), yπ (t, Xπ (t)), zπ (t, Xπ (t))


+

∫ T

t
df


s, Xπ (s), Yπ (s, Xπ (s)), Zπ (s, Xπ (s))


= f


t, Xπ (t), yπ (t, Xπ (t)), zπ (t, Xπ (t))


+

∫ T

t


fs + fyYπ

s + fzZπ
s + (fx + fyYπ

x + fzZπ
x )

×

r0(s)Xπ (s) + θaπ (s) + r(s)′bπ (s) + m


+

1
2


fxx + 2fxyYπ

x + 2fxzZπ
x + fyy(Yπ

x )2

+ 2fyzYπ
x Zπ

x + fzz(Zπ
x )2

+ fyYπ
xx + fzZπ

xx


aπ (s)2σ 2

0 + bπ (s)′Σ(s)bπ (s)


ds
+

∫ T

t
(fx + fyYπ

x + fzZπ
x )


aπ (s)σ0dW0(s)

+ bπ (s)′σ(s)dW (s)

.

Substituting (48) and (51) into the above formula, we obtain

f

T , Xπ (T ), Yπ (T , Xπ (T )), Zπ (T , Xπ (T ))


= f


t, Xπ (t), yπ (t, Xπ (t)), zπ (t, Xπ (t))


+

∫ T

t


fs + fx


r0(s)Xπ (s) + θaπ (s) + r(s)′bπ (s) + m


+

1
2
U(f , Yπ , Zπ )


aπ (s)2σ 2

0 + bπ (s)′Σ(s)bπ (s)


ds

+

∫ T

t
(fx + fyYπ

x + fzZπ
x )


aπ (s)σ0dW0(s)

+ bπ (s)′σ(s)dW (s)

. (54)

Third, based on (54) we show that

F(t, x) ≥ sup
π∈Π

f (t, x, yπ (t, x), zπ (t, x)). (55)

Applying the Itô formula to F and using (6), we have

F(t, Xπ (t)) = F(T , Xπ (T )) −

∫ T

t
dF(s, Xπ (s))

= F(T , Xπ (T )) −

∫ T

t


Fs + Fx


r0(s)Xπ (s)

+ θaπ (s) + r(s)′bπ (s) + m

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+
1
2
Fxx


aπ (s)2σ 2

0 + bπ (s)′Σ(s)bπ (s)


ds

−

∫ T

t
Fx


aπ (s)σ0dW0(s)

+ bπ (s)′σ(s)dW (s)

. (56)

Moreover, (14) implies that ∀(t, x) ∈ [0, T ] × R,

Ft ≤ ft − [r0(t)x + θaπ (t) + r(t)′bπ (t) + m](Fx − fx)

−
1
2
[aπ (t)2σ 2

0 + bπ (t)′Σ(t)bπ (t)](Fxx − U). (57)

Inserting (15) with x = Xπ (T ) and (57) with x = Xπ (t) into (56)
yields

F(t, Xπ (t))
≥ f


T , Xπ (T ), Xπ (T ), Xπ (T )2


−

∫ T

t


fs + fx[r0(s)Xπ (s) + θaπ (s) + r(s)′bπ (s) + m]

+
1
2
U(f , Yπ , Zπ )[aπ (s)2σ 2

0 + bπ (s)′Σ(s)bπ (s)]

ds

−

∫ T

t
Fx


aπ (s)σ0dW0(s) + bπ (s)′σ(s)dW (s)


. (58)

According to the Eqs. (49) and (52),

Yπ (T , Xπ (T )) = Xπ (T ), Zπ (T , Xπ (T )) = Xπ (T )2.

With them, substituting (54) into (58) leads to

F(t, Xπ (t)) ≥ f

t, Xπ (t), yπ (t, Xπ (t)), zπ (t, Xπ (t))


+

∫ T

t
(fx + fyYπ

x + fzZπ
x − Fx)

×

aπ (s)σ0dW0(s) + bπ (s)′σ(s)dW (s)


. (59)

On both sides of the above formula, taking conditional expectation
and thereafter supremum over Π , we obtain formula (55).

(ii) Consider the specific policy π∗.
First, according to the assumption of the theorem, functions G

and H satisfy the conditions of the two claims in (i) with policy π∗.
Hence, G(t, x) = yπ∗

(t, x) and H(t, x) = zπ∗

(t, x).
Second, for the specific policy π∗, the inequalities (57)–(59)

become equations. Hence we have

F(t, Xπ (t)) = f

t, Xπ∗

(t), yπ∗

(t, Xπ∗

(t)), zπ∗

(t, Xπ∗

(t))


+

∫ T

t
(fx + fyYπ∗

x + fzZπ∗

x − Fx)

×

aπ∗

(s)σ0dW0(s) + bπ∗

(s)′σ(s)dW (s)

. (60)

Taking conditional expectation on both sides yields

F(t, x) = f

t, Xπ∗

(t), yπ∗

(t, Xπ∗

(t)), zπ∗

(t, Xπ∗

(t))


≤ sup
π∈Π

f (t, x, yπ (t, x), zπ (t, x)). (61)
This together with (55) finally gives

F(t, x) = f

t, Xπ∗

(t), yπ∗

(t, Xπ∗

(t)), zπ∗

(t, Xπ∗

(t))


= sup
π∈Π

f (t, x, yπ (t, x), zπ (t, x)).

Thismeans thatπ∗ is the optimal policy and the supremum is given
by F(t, x). �
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