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Abstract

Traditionally, product returns have been viewed as an unavoidable cost of doing business, forfeiting any chance of cost
savings. As cost pressures continue to mount in this era of economic downturns, a growing number of firms have begun to
explore the possibility of managing product returns in a more cost-efficient manner. However, few studies have addressed
the problem of determining the number and location of centralized return centers (i.e., reverse consolidation points) where
returned products from retailers or end-customers were collected, sorted, and consolidated into a large shipment destined for
manufacturers’ or distributors’ repair facilities. To fill the void in such a line of research, this paper proposes a nonlinear mixed-
integer programming model and a genetic algorithm that can solve the reverse logistics problem involving product returns.
The usefulness of the proposed model and algorithm was validated by its application to an illustrative example dealing with
products returned from online sales.
� 2004 Published by Elsevier Ltd.

Keywords:Reverse logistics; Location-allocation; Genetic algorithm

1. Introduction

As of 1999, the total value of returned merchandise was
$62 billion, representing $10–$15 billion in losses to retail-
ers in the United States, while the cost of handling these
product returns was estimated to be $40 billion[1]. Faced
with the mounting costs of managing product returns, some
companies have begun to consider mapping the process
of reverse logistics involving product returns and creating
opportunities for cost savings and service improvements.
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These companies include e-tailers that have grown with in-
creases in online sales, but were often overwhelmed by the
scope and complexity of sending returned products back
to their distributors or manufacturers for credit. According
to ReturnBuy[1], return rates for online sales are substan-
tially higher than traditional bricks-and-mortar retail sales,
reaching 20–30% in certain categories of items. In an ex-
treme case, Rogers and Tibben-Lembke[2] reported that
an average return rate for the magazine publishing industry
was 50%.

With ever-rising costs of product returns and dwindling
profit margins, the optimal handling of product returns can
be a competitive differentiator since a firm can save a sub-
stantial amount of transportation, inventory, and warehous-
ing costs associated with product returns. Indeed, Shear
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Table 1
Comparison between reverse logistics and forward logistics

Reverse logistics Forward logistics

Quantity Small quantities Large quantities of
standardized items

Information tracking Combination of automated Automated information
and manual information systems used to track items
systems used to track items

Order cycle time Medium to long order cycle time Short order cycle time
Product value Moderate to low product value High product value
Inventory control Not focused Focused
Priority Low High
Cost elements More hidden More transparent
Product flow Two way (“push and pull”) One way (“pull”)
Channel More complex and diverse Less complex (single or

(multi-echelon) multi-echelon)

Source: Adapted and modified from Shear et al.[3], “The warehousing link of reverse logistics.”

et al. [3] noted that handling costs associated with product
returns could reach $50 per item and could be three times
higher than outbound shipping costs. In addition, they ob-
served that product returns often reduced current assets due
to lower inventory values for returned products, increased
short-term liabilities due to required repairs and refurbish-
ment, lengthened order cycle time due to reshipment of or-
dered items, and decreased sales revenue due to lost sales.
As such, those firms that are willing to implement an opti-
mal strategy of handling product returns can bring in mil-
lions of dollars of potential cost savings. Poirier[4] recently
observed that firms in the optimal (or efficient) supply chain
network enjoyed 40% more cost savings, 33% more in-
ventory reductions, and 44% higher customer services than
those in the inefficient supply chain network.

Typically, a product return involves the collection of re-
turned products at designated regional distribution centers
or retail outlets, the transfer and consolidation of returned
products at centralized return centers, the asset recovery of
returned products through repairs, refurbishing, and reman-
ufacturing, and the disposal of returned products with no
commercial value. The product return process entails the
determination of the number and location of initial collec-
tion points for returned products and the location/allocation
of centralized return centers in such a way that total reverse
logistics costs (e.g., inventory carrying and transportation
costs) are minimized, capacity of initial collection points and
centralized return centers are fully utilized, and the conve-
nience of customers who return products is maximized. By
nature, the product return process is more complicated than
forward logistics operations due to the presence of multi-
ple reverse distribution channels (direct return to manufac-
turers versus indirect return to regional collection points or
centralized return centers), individualized returns with small
quantities, extended order cycles associated with product
exchanges, and a variety of disposition options (e.g., repair

versus liquidation). Recognizing the inherent complexity of
the product return process, this paper develops a mathe-
matical model and its solution procedure that can optimally
create the reverse logistics network linking initial collec-
tion points, centralized return centers, and manufacturing
facilities.

2. Relevant literature

In a broader sense, reverse logistics refers to the distri-
bution activities involved in product returns, source reduc-
tion/conservation, recycling, substitution, reuse, disposal,
refurbishment, repair and remanufacturing (e.g.,[5]). As
shown inTable 1, reverse logistics differs significantly from
forward logistics. Despite its differences, reverse logistics
has drawn little attention from researchers and practitioners
alike until recent years. For the last decade, increasing con-
cerns over environmental degradation and increased oppor-
tunities for cost savings or revenues from returned products
prompted some researchers to formulate more effective re-
verse logistics strategies. These researchers include Min[6]
who developed a multiple objective mixed integer program
that was designed to select the most desirable shipping op-
tions (direct versus consolidated) and transportation modes
for product recall. Although he considered a tradeoff be-
tween transportation time and cost associated with reverse
logistics, his model could not handle multi-modal situations.
Caruso et al.[7] proposed a multiple objective mixed inte-
ger program and a heuristic solution procedure for solving
the location-allocation of waste service users, processing
plants, and sanitary landfills with capacity constraints. Con-
sidering a multiple planning horizon, Melachronoudis et al.
[8] also developed a multiple objective integer program for
the dynamic location of capacitated sanitary landfills. Del
Castillo and Cochran[9] presented a pair of linear programs
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(one aggregated and another disaggregated) and a simula-
tion model to optimally configure the reverse logistics net-
work involving the return of reusable containers in such a
way that the number of reusable containers was maximized.
However, they did not take into account transportation is-
sues related to reverse logistics. In an effort to recycle con-
struction waste as sieved sand, Barros et al.[10] proposed
a mixed integer program which determined the locations of
regional depots for receiving the flow of sieved sand and
treatment facilities for cleaning and storing polluted sand.
Unlike other previous models, they considered two-echelon
location problems with capacity constraints.

Initiating product recovery network design efforts,
Thierry [11] introduced a linear program to design product-
distribution and product recovery networks involving the
collection of used copying machines. However, his model
did not address the location issue of where the product re-
covery (resale of products after remanufacturing and refur-
bishment) process should be installed and at what capacity.
Extending the work of Thierry[11], Krikke [12] proposed a
network graph and a mixed integer program to optimize the
degree of disassembly and evaluate product recovery op-
tions in collecting used copying machines and redistributing
them after refurbishment, while determining the location
and capacity of remanufacturing, central stocking, and dis-
posal facilities. Similarly, Krikke et al.[13] developed a
mixed integer program to determine the locations of shred-
ding and melting facilities for the recovery and disposal of
used automobiles, while determining the amount of prod-
uct flows in the reverse logistics network. More recently,
Jayaraman et al.[14] presented a mixed integer program
to determine the optimal number and locations of reman-
ufacturing facilities for electronic equipment. Jayaraman
et al. [15] extended their prior work to solve the two-level
hierarchical location problem involving the reverse logis-
tics operations of hazardous products. They also developed
heuristic concentration procedures combined with heuristic
expansion components to handle relatively large problems
with up to 40 collection sites and 30 refurbishment sites.
Despite their success in solving large-sized problems, their
model and solution procedures are still confined to a single
period problem and are not designed to deal with the pos-
sibility of making trade-offs between freight rate discounts
and inventory cost savings resulting from consolidation of
returned products. For a detailed and updated review of
product recovery network models, interested readers should
refer to Fleschmann et al.[16].

As summarized above, a majority of existing reverse lo-
gistics models have, so far, focused on the environmental
aspects (e.g., product recovery, recycling, reuse) of the re-
verse logistics network for used products, which ended their
life cycles, and neglected various consolidation and channel
selection decisions for product returns. The proposed model
in this study will aim to design a reverse logistics network
involving products returned due to either defects or changes
in customers’ needs/preferences.

3. Problem definition

As of 2000, product returns averaged approximately 6%
of sales[17]. The rate of product returns is usually higher for
books, magazines, apparel, greeting cards, CD-ROMs and
electronics. In particular, mail catalogue or on-lines sales are
more vulnerable to product returns. A work in Modern Ma-
terial Handling estimated that 30% of online sales would be
returned to e-retailers[18]. This high rate of returns would
cost e-tailers $1.8 to $2.5 billion a year. Typical reasons
for product returns may include: defects, in-transit damage,
trade-ins, product upgrades, exchanges for other products,
refunds, repair, recalls, and order errors. Regardless of the
reasons for the returns, many e-tailers (84%) either absorb
the cost of return shipment or offer a money-back guarantee
for returned products, making product returns a major cost
center. To control the cost of handling returns, a growing
number of e-tailers and their third-party logistics providers
(3PLs) have begun to examine ways to improve the effi-
ciency of product returns. Examples of such ways are:

1. Reduction of return shipping costs by taking advantage
of economies of scale. A number of separate consoli-
dation points such as centralized return centers can be
established to aggregate small shipments into a large
shipment.

2. Enhancement of customer convenience for product re-
turns. A number of initial collection points near to the
customer population center can help customers reduce
their travel time to the collection points for returns.

3. Reduction in in-transit inventory carrying costs associ-
ated with product returns. Since in-transit inventory car-
rying costs are proportionately related to transit time of
transportation modes that are used for return shipment,
one should consider the fastest mode of transportation
while weighing its freight rate.

For an illustrative purpose, let us suppose that an e-
tailer (calledBeta.comhereafter) selling various computer
equipment and peripherals has been inundated with returned
products due to its liberal return policy. Although many cus-
tomers prefer to return computers directly to original equip-
ment manufacturers (OEMs), direct shipment is far more
costly than indirect shipment due to frequent, small volume
shipment that often requires a premium mode of transporta-
tion, such as UPS small package delivery services. In addi-
tion, many customers do not want to deal with the hassle of
making shipping arrangements for returns through regional
postal services. Instead, they would like to drop-off comput-
ers at one of the initial collection points located near their
residence or office. Candidates for these initial collection
points include: local pharmacies, video-rental stores, 24-h
convenience shops, and gas stations. SinceBeta.comdoes
not own these collection points, the collection points will
not incur fixed costs such as land purchase, lease, and prop-
erty tax. However, the collection points will incur variables
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costs associated with renting limited space designated for
“non-selling” returned products. Given the limited storage
space of the initial collection points, returned products at the
collection points should be quickly transshipped to central-
ized return centers where returned products are inspected for
quality failure, sorted for potential repair or refurbishment,
stored long enough to create volume for freight consolida-
tion, and shipped to original manufacturers (or third-party
logistics provider’s repair depots).

From centralized return centers, some returned products,
which are found to be defect- or damage-free, may be re-
distributed to customers after repackaging or re-labeling.
Centralized return centers are dedicated to return handling
and processing. Thus, they are owned and operated by
Beta.comand separated from the typical warehousing func-
tions. On the other hand, centralized return centers may
play a critical role in linking the initial collection points to
manufacturing or repair facilities within the reverse logis-
tics network. One can bypass the centralized return center
for returning products to manufacturers, if the initial collec-
tion points are closer to the location of given manufacturers
than that of centralized return centers or consolidation at
the centralized return center considerably delays the return
process. With the above situations in mind, the main issues
to be addressed by this study are:

1. Where to locate initial collection points in such a way
that travel time (or distance) from existing and potential
customers to the collection points is minimized?

2. Where to locate centralized return centers in a manner
that costs of transshipment between the initial collection
points and manufacturing (or repair facility) locations are
minimized?

3. How to build the reverse logistics network in such a way
that a timely pickup can be made between the initial
collection point and the centralized return center? Con-
sidering hours-of-service-regulations stipulated by the
federal highway administration(FHA), the locations of
initial collection points should be within certain hours of
driving time from the nearest centralized return center.

4. How frequently returned products at the initial collection
point should be consolidated to minimize shipping costs,
while delays in the return process are avoided?

5. How many initial collection points and centralized return
centers are needed to minimize the customer hassles as-
sociated with product returns while minimizing the costs
of handling returns?

To summarize, the reverse logistics problem facing
Beta.comis primarily concerned with determining which
retail stores should be chosen as initial collection points,
which new centralized return centers to establish, and which
reverse logistics channels to use. To deal with this problem,
systematic decision-aid tools are needed which consider
a multitude of conflicting factors affecting the reverse lo-
gistics network and an analysis of the tradeoffs among

them. Such decision-aid tools include various mathemati-
cal programming techniques such as integer programming
(see, e.g.,[19]). Considering thatBeta.com’s main objec-
tive is to maximize the potential cost savings accrued from
the multi-echelon reverse logistics channel, we propose
a single-objective, nonlinear, mixed-integer programming
model as our decision-aid tool. The proposed model is
designed to find the optimal location, number and size of
both initial collection points and centralized return centers
in the reverse logistics network under capacity limits and
service requirements.

4. Model design

Prior to developing the nonlinear mixed-integer program-
ming model for reverse logistics network design, we make
the following underlying assumptions and simplifications:
(1) The possibility of direct shipment from customers to a
centralized return center is ruled out due to insufficient vol-
ume. (2) Given small volume of individual returns from cus-
tomers, an initial collection point has sufficient capacity to
hold returned products during the consolidation process. (3)
The transportation costs between customers and their near-
est collection points are negligible given short distances be-
tween customers and their nearest collection point. (4) The
location/allocation plan covers a planning horizon within
which no substantial changes are incurred in customer de-
mands and in the transportation infrastructure.

4.1. Indices

i index for customers;i ∈ I
j index for initial collection points;j ∈ J
k index for centralized return centers;k ∈ K

4.2. Model parameters

a annual cost of renting initial collection
point j

b daily inventory carrying cost per unit
w annual working days
ri daily volume of products returned by

customeri
h handling cost of unit product per day
qk cost of establishing centralized return

centerk
mk maximum capacity of centralized return

centerk
dij distance from customeri to initial col-

lection pointj
djk distance from collection pointj to cen-

tralized return centerk
l maximum allowable distance from a

given customer to an initial collection
point

f (Xj0, dj0) E�� ( = function for freight rate)
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where� is a discount rate according to the volume of ship-
ment between initial collection pointj and centralized re-
turn centerk; � is a penalty rate applied for the distance
between collection pointj and centralized return centerk

� =
{1 for Xj0�p1,

�1 for p1<Xj0�p2,

�2 for xj0>p2,

� =
{1 for dj0�q1,

�1 for q1<dj0�q2,

�2 for dj0>q2,

E unit freight rate
p1, p2 volume of returned products for a discount
q1, q2 distance between collection pointj and cen-

tralized return centerk for penalties
z minimum number of established initial collec-

ton points
g minimum number of established centralized

return centers
M arbitrarily set large number.

4.3. Decision variables

Xjk = volume of products returned from initial col-
lection pointj to centralized return centerk,

Tj = length of a collection period (in days) at initial
collection point j,

Yij =
{1, if customeri is allocated to initial

collectionj (i ∈ I, i �= j),

0, otherwise.

Zj =
{1, if an initial collection point is

established at sitej (j ∈ J ),
0, otherwise.

Gk =
{1, if a centralized return center is

established at sitek(k ∈ K),
0, otherwise.

4.4. Mathematical formulation

(P ) Minimize

�
∑
j

Zj + bw
∑
j




∑
i

riYij
(Tj + 1)

2


 + hw

∑
i

ri

+
∑
k

qkGk +
∑
k


Gk

∑
j

(
Xjk

w

Tj

)

× f (Xjk, djk)


 (1)

Subject to
∑
j

Yij = 1, ∀i ∈ I, (2)

∑
i

Yij �M · Zj , ∀j ∈ J, (3)

∑
i

riYij Tj =
∑
k

Xjk, ∀j ∈ J, (4)

∑
j

Xjk�mkGk, ∀k ∈ K, (5)

dij Yij � l, ∀i ∈ I, ∀j ∈ J, (6)

z�
∑
j

Zj , (7)

g�
∑
k

Gk, (8)

Xjk�0, ∀j ∈ J, ∀k ∈ K, (9)

Tj ∈ (0,1,2,3,4,5,6,7), ∀j ∈ J, (10)

Yij , zj ,Gk ∈ (0,1)∀i ∈ I,∀j ∈ J, ∀k ∈ K.
(11)

The objective function (1) minimizes total reverse logis-
tics costs comprised of renting, inventory carrying, material
handling, setup, and shipping costs. Notice that objective
function (1) has a nonlinear form because both inventory
carrying and shipping costs are affected by the length of a
collection period. Constraint (2) assures that a customer is
assigned to a single initial collection point. Constraint (3)
prevents any return flows from the unopened initial collec-
tion point. Constraint (4) makes the incoming flow equal to
the outgoing flow at an initial collection point. Constraint (5)
ensures that the total volume of products returned from ini-
tial collection points does not exceed the maximum capac-
ity of a centralized return center. Constraint (6) assures that
each initial collection point should be located within a cer-
tain allowable proximity of customers. Constraints (7) and
(8) maintain a minimum number of initial collection points
and centralized return centers for product return. Constraint
(9) preserves the non-negativity of decision variablesXjk .
Constraint (10) limits a range of integrality of decision vari-
ablesTj . Constraint (11) assures the binary integrality of
decision variablesYij , Zj , andGk .

5. Model application and results

The proposed model was applied to the hypothetical prob-
lem facingBeta.com. In order to handle an increasing vol-
ume of product returns and the subsequent repairs,Beta.com
has been exploring the possibility of establishing initial col-
lection points and centralized return centers, while maxi-
mizing easy and convenient returns from the customers. The
potential locations of collection points and centralized re-
turn centers were summarized inTable 2. Once established,
these facilities would serve a total of 30 clusters of cus-
tomers, and daily demand of each cluster was shown in
Table 3. The total daily demand is 848 units and an annual
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Table 2
Potential sites of initial collection points and centralized return centers

Potenttial sites for Site coordinate Potential sites Site coordinate
initial collection points for centralized

x y return centers x y

cp1 43.97 49.89 crc1 8.58 30.25
cp2 1.57 12.65 crc2 32.36 28.59
cp3 41.23 30.25 crc3 9.58 6.51
cp4 5.04 58.97 crc4 47.54 19.31
cp5 24.79 19.00 crc5 20.14 53.21
cp6 16.18 20.66
cp7 30.18 45.30
cp8 40.32 0.40
cp9 6.94 33.58
cp10 54.71 57.06

Table 3
Locations and daily demands of customers

No. Coordinates Daily demand

X Y

1 15.69 3.80 12
2 18.67 24.28 43
3 1.60 59.13 34
4 9.43 2.27 21
5 49.08 54.43 19
6 33.14 10.85 10
7 28.62 50.00 37
8 24.86 59.39 22
9 3.42 35.85 35

10 33.23 21.90 29
11 45.32 27.23 22
12 46.37 6.36 21
13 24.93 32.60 11
14 28.07 33.38 27
15 2.77 0.50 44
16 28.61 51.99 41
17 38.80 51.71 46
18 2.13 41.98 22
19 25.78 2.81 37
20 45.69 57.24 45
21 48.17 8.13 38
22 36.72 14.35 27
23 42.61 27.50 29
24 22.15 33.30 11
25 25.63 28.51 23
26 9.10 26.42 10
27 24.79 11.26 39
28 17.46 11.20 18
29 11.87 12.97 44
30 6.15 38.45 33

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60
x

cust cp crc

Fig. 1. Graphical representations of customers, initial collection
points and centralized return centers.

working day is 250 (total annual demand=212,100 units).
For simplicity, Euclidean distance is used for measuring
travel distance, and the maximum allowable distance from
customers to the nearest collection point is estimated to be
25 miles. Also, a graphical representation of those locations
was shown inFig. 1. Other input parameters associated with
collection points and centralized return centers are summa-
rized inTable 4. TheBeta.commanagement team intended
to determine the number of collection points and central-
ized return centers needed for handling products returned
for repairs while considering easy and convenient access for
customers within 25 miles of the nearest collection point.
Also, the team considered an appropriate collection period
for the tradeoff between distance and volume from a col-
lection point to a centralized return center owing to small
volume of returns. To aid theBeta.commanagement team
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Table 4
Input parameters

Parameter Index Value

Annual cost of renting an initial a $200
collection point
Daily inventory carrying cost per unit b $0.1
Working days per year w 250
Unit handling cost at the collection point h $0.1
Cost of establishing a centralized qk $3,000
return center
Capacity of a centralized return center mk 1000 units
Service coverage l 25 miles
Unit standard transportation cost E 1
Discount rate with respect to
shipping volume

�1 0.8
�2 0.6
p1 200 units
p2 400 units

Penalty rate with respect to
shipping distance

�1 1.1
�2 1.2
q1 25 miles
q2 60 miles

Minimum number of the established z 1
collection points
Minimum number of the established g 1
centralized return centers

Yij 

Xjk Tj 

Zj 
Gk 

Fig. 2. Return network flows.

in finding the optimal alternative, we attempted to solve the
model specified in Section 4 using a genetic algorithm (GA)
since a reverse logistics network design belongs to a class
of NP-complete problem (see, e.g.,[20] for a definition of
NP-completeness). In addition, GA can overcome computa-
tional complexity induced by the nonlinear objective func-
tion. Through model experimentation, the base-line model
resulted in 315 integer variables, 60 continuous variables,
and 355 constraints.Fig. 2 shows a proposed network flow
for handling product returns.

5.1. Genetic algorithm development

In order to solve the reverse logistics network design
problem for product returns, we propose a GA comprised
of two sub-algorithms. GA is referred to as a stochastic
solution search procedure that is designed to solve combi-
natorial problems using the concept of evolutionary com-
putation imitating the natural selection and biological re-
production of animal species[21,22]. In the past, GA has
been successfully applied to classical combinatorial prob-
lems such as capacitated plant location[23], fixed charge
location[24], minimum spanning tree[25], network design
[26], and warehouse allocation[27]. Given this proven ef-
fectiveness of GA for various combinatorial problems, GA
is suitable for solving the reverse logistics network design
problem. Another appeal of GA includes its flexible solu-
tion search process that can convert constrained problems
into unconstrained problems and then cross the feasibil-
ity boundary to find near-optimal or optimal solutions in
an “intelligent” (probabilistic) manner rather than relying
on random enumerations or iterations. In particular, GA is
chosen over other meta-heuristics procedures such as tabu
search due to its ability to generate a collection of solutions
rather than a single solution at each stage (see, e.g.,[28] for
an excellent discussion of tabu search algorithms).

Prior to the application of GA, we need to design the ge-
netic representation (or chromosome) of the candidate solu-
tions. Herein, a chromosome represents each solution in the
initial solution set of solutions (population). The size of the
population depends on the size and the nature of the prob-
lem at hand. The chromosome evolves through a crossover
operator and a mutation operator to produce children, im-
proving on the current set of solutions. The chromosomes
in the population are then evaluated through a fitness func-
tion and the less fit chromosomes are replaced with better
children. The processes of crossover, evaluation and selec-
tion are repeated for a predetermined number of iterations
called generations, usually up to the point where the system
ceases to improve or the population has converged to a few
well performing chromosomes.

5.1.1. Encoding
The design of a suitable chromosome is the first step for

a successful GA implementation because it applies proba-
bilistic transition rule on each chromosome to create a pop-
ulation of chromosomes, representing a good candidate so-
lution. Each chromosome developed in this study is based
on single dimensional array which consists of binary val-
ues, representing decision variables related to initial collec-
tion points, centralized return centers, and collection periods
(i.e., consolidation intervals or holding time for consolida-
tion at the collection point). For example, the representation
of a chromosome is illustrated inFig. 3. The solution (chro-
mosome) has 30 initial collection points, 7 days of collec-
tion periods at collection points, and five centralized return
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1 0 1 1 0 0 0 0 … 1 1 0 1 1 0 1 0 0 

days days days 

cp1 cp2 cp30 crc1 crc2 crc3 crc4 crc5 

cp = collection point; crc = centralized return center 

Fig. 3. A genetic representation scheme: cp= collection point;
crc= centralized return center.

centers. Each collection point has four genes: the first gene
represents opening(=1)/closing(=0) decisions; the remain-
ing three genes represents collection periods for collection
points so that eight possible values from 0 to 7 are obtained.
As shown inFig. 3, collection point 1 is open and has a 3
day-interval for consolidation of returned products for trans-
shipment (e.g., 3 days= 0 × 4 + 1 × 2 + 1 × 1); collection
point 2 is closed; collection point 30 is open and has a 5 day-
interval for consolidation (e.g., 5 days=1×4+0×2+1×1).
Each centralized return center has one gene representing an
opening/closing decision to keep centralized return centers
1 and 3 open.

5.2. Genetic operators

The proposed GA solution procedure used four genetic
operators described below.

5.2.1. Cloning operator
The cloning operator involves keeping the best solutions.

In the proposed GA, the procedure works in such a way that
it copies 20 percent of the current best chromosomes to a
new population.

5.2.2. Parent selection operator
The parent selection operator is an important process that

directs a GA search toward promising regions in a search
space. Two parents are selected from the solutions of a par-
ticular generation by selection methods that assign repro-
duction opportunities to each individual parent in the pop-
ulation. There are a number of different selection methods,
such as roulette wheel selection, tournament selection, rank
selection, elitism selection, and random selection[22]. For
this experimentation, we used a binary tournament selection
method that began by forming two teams of chromosomes
[29]. Each team consists of two chromosomes randomly
drawn from the current population. The two best chromo-
somes that are taken from one of the two teams are chosen
for crossover operations. As such, two offspring are gener-
ated and enter into a new population.

5.2.3. Crossover operator
The crossover operator generates new children by com-

bining information contained in the chromosomes of the
parents so that new chromosomes will have the best parts
of the parents’ chromosomes. The crossover probability in-
dicates how often a crossover will be performed. There are

several types of crossovers, including single-point crossover,
multi-point crossover, and uniform crossover[22]. Herein,
we applied the two-point crossover in which one is used
for locating initial collection points and another for locating
centralized return centers. The two locations of the crossover
points are randomly selected in opening/closing decisions of
facilities and then swap segments of the two parents’ strings
to produce two children.

5.2.4. Mutation operator
After recombination, some children undergo mutation.

Mutation operates by inverting each bit in the solution with
some small probability, usually from zero to 10 percent. The
rationale is to provide a small amount of randomness, and
to prevent solutions from being trapped at a local optimum.
The type of mutation varies depending on the encoding as
well as the crossover. In the proposed GA, the mutation op-
erator first randomly selects a bit value of opening/closing
decision variables on a chromosome, and then, flips a bit
value from 0 to 1, or from 1 to 0. Next, in case of the deci-
sion variables for collection points, if the changed bit value
is 0, make all zeros in the corresponding three bits for col-
lection period; otherwise, randomly generate the three bit
values. Hence, a good level of diversity in each generation
is achieved.

5.2.5. Fitness function
Decoding the chromosome generates a candidate solution

and its fitness value based on the fitness function. The fit-
ness value is a measure of the goodness of a solution with
respect to the original objective function and the “amount
of infeasibility”. The fitness function is formed by adding a
penalty to the original objective function. To elaborate, the
original objective function is comprised of various costs,
such as the cost of renting initial collection points, the cost
of carrying inventory at initial collection points, the cost of
handling returns at initial collection points, the cost of es-
tablishing centralized return centers, and the cost of trans-
shipment from initial collection points to centralized return
centers.

In particular, we first generate decision variables from
chromosomes using genetic operators such as open-
ing/closing collection points, collection periods, and open-
ing/closing centralized return centers. Then, based on the
set of the variables, a fitness value of each chromosome
can be obtained by applying two consecutive procedures.
These procedures are coded in C+ + and combined in the
overall GA solution procedure.

The first step is used for obtaining total daily demand of
the opened collection points. In other words, all customers
should be allocated to the nearest collection points. To do
this, we applied an assignment algorithm since we assumed
that there is enough capacity of each collection point owing
to small volume of returns. The mathematical representation
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is as follows:

Minimize bw
∑
j




∑
i

riYij
(Tj + 1)

2


 + a

∑
j

Zj

Subject to
∑
j

Yij = 1, ∀i ∈ I,
∑
i

Yij �MZj , ∀j ∈ J,

dij Yij � l, ∀i ∈ I, ∀j ∈ J,
Yij ∈ (0,1), ∀i ∈ I, ∀j ∈ J.

Next, the second step is used for assigning opened collection
points to an appropriate centralized return center according
to capacity limitation. In order to solve this, we applied a
simplex method for a transportation problem. The mathe-
matical representation is as follows:

Minimize
∑
k


Gk

∑
j

(
Xjk

w

Tj

)
f (Xjk, djk)




+
∑
k

qkGk

Subject to
∑
i

riYij Tj =
∑
k

Xjk, ∀j ∈ J,
∑
j

Xjk�mkGk, ∀k ∈ K,

0�Xjk, ∀j ∈ J, ∀k ∈ K.
The penalty function is mathematically expressed as:

Penalty function=
∑
j

∑
k

pv × g(Xjk,mk,Gk)

+
∑
i

∑
j

pv × h(dij , Yij , l),

wherepv = penalty value.

g(Xjk,mk,Gk)= 1 if
∑
j

Xjk >mkGk; otherwise 0,

h(dij , Yij , l)= 1 if dij Yij > l; otherwise 0.

The penalty value is considerably larger than any possible
objective function value corresponding to the current popu-
lation of individuals.

5.3. An overall GA solution procedure

Once the representation scheme is selected, the overall
algorithm of the proposed GA can be described as follows:

(1) Read the required data and generate an initial population
based on population size, in which each chromosome
is a one-dimensional array representing decision values.
In each chromosome, first the opening/closing decision

of any facility is randomly made using binary value
(0 or 1). Second, if a collection point is open, a value
of three genes for the collection period is randomly
determined using binary values; If an initial collection
point is closed, all three genes are zero.

(2) Set the generation zero and evaluate the fitness function
of each chromosome in a population. The fitness func-
tion is the sum of the objective function of the original
problem and the penalty function.

(3) Create a new population by repeating generation oper-
ations (cloning, parent selection, crossover, and muta-
tion) until the new population is complete. The com-
bined tournament and elitism method is used for select-
ing the parent. Two-point crossover and random muta-
tion are used for positioning a chromosome.

(4) Replace new offspring in a new population.
(5) Stop the iteration if the end condition is satisfied; oth-

erwise go to the next generation. Herein, the overall
pseudo-code procedure for the proposed heuristic is
outlined:

Read_Data( );
Initialize_Population( );
while (not terminate condition)do

Evaluate_Fitnessfunction
{

Check_Feasibility( )
Sol_Assignment( );
Sol_Transportation( );
Add_Penalty( );

}
Cloning( )
Select_Parents( );
Crossover( );
Mutation( );

endwhile
Generate_Outputs;

6. Model experiments with sensitivity analysis

For illustrative purpose, a base-line model was solved
by using the proposed GA that sets the parameter values
through extensive experiments. These parameters are: pop-
ulation size= 400; maximum number of generations= 200;
cloning= 20%; crossover rate= 80%; mutation rate varies
from 5% to 10% as the number of generations increases. The
GA solution procedure was executed on an IBM Pentium III
computer equipped with a speed of 512 KB, and 256 MB of
memory. The base-line solution required 12.48 min of CPU
time. However, asTable 5shows, larger values in popula-
tion size and maximum number of generations tend to in-
crease CPU time for model experiments.Fig. 4 shows the
best fitness values at each generation as a function of the
number of generations.Fig. 5 shows a graphical represen-
tation of the best solution with an objective function value
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Table 5
The summary of model experiments with changes in GA parameters

Generation/population 100/300 200/300 300/300 400/300 500/300

Total cost $216,520 $212,808 $213,500 $213,135 $213,850
Run time (in minutes) 4.24 8.30 12.62 16.91 21.30

Population/generation 200/200 300/200 400/200 500/200 600/200
Total cost $213,135 $212,808 $211,570 $212,925 $213,195
Run time (in minutes) 5.64 8.30 12.48 15.58 18.58
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Fig. 4. The convergence of fitness values.
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Fig. 5. A graphical display of the best base-line solution.

of $211,579, where four initial collection points and two
centralized return centers are open.Table 6summarized the
base-line solution, where initial collection points 3, 4, 6, and
7 are selected and their collection periods are 3, 4, 2, and
2, respectively; centralized return centers 1 and 2 are open
with their throughput capacity of 436 and 414, respectively.

6.1. A sensitivity analysis of the maximum holding period
to the model solution

A longer maximum holding period for consolidation
increases inventory carrying costs, but it can reduce total
reverse logistics costs due to increased freight consoli-
dation opportunities. To examine the sensitivity of the
maximum holding period to total reverse logistics costs,
we experimented on the model by changing the maxi-
mum holding period.Table 7 summarizes the results of
sensitivity analysis with four different maximum holding
periods (e.g., 1 day, 2 days, 3 days, and 4 days). The
model experiments indicated that as the maximum holding
period increased, the total reverse logistics cost decreased
(e.g., 100%, 98%, 85%, and 84%), but the overall network
structure remained stable, opening two centralized return
centers and four initial collection points. In particular, we
noticed a dramatic cost saving in total reverse logistics costs
after setting the maximum holding period at three days
(seeTable 7).

6.2. A sensitivity analysis of locations of initial collection
points to the model solution

The proximity of initial collection points to customer pop-
ulation centers can enhance the level of customer service due
to easy access to customers’ locations. However, to reduce
distances between initial collection points and customers,
Beta-comwould require a larger number of initial collec-
tion points and thereby increase total reverse logistics costs.
Thus, a sensitivity analysis was conducted to determine the
desirable proximity of initial collection points to customers.
Table 8shows the summary of the sensitivity analysis results
with four different possibilities of proximity (e.g., 17, 21,
25, and 29 miles). As expected, as the distance between ini-
tial collection points and customer locations increased, the
total reverse logistics cost decreased (e.g., 100%, 95%, 88%,
and 83%). Also, the longer distance between initial collec-
tion points and customer locations led to reduction in the
total number of initial collection points and the subsequent
savings in total reverse logistics cost. Compromising total
reverse logistics cost and customer service, we recommend
25 miles between initial collection points and customers as
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Table 6
The summary of the base-line model solution

Number of centralized return centers= 2
Number of initial collection points= 4
(Initial collection point; the number of collection frequency)= {(3; 3), (4; 4), (6; 2), (7; 2)}
(Initial collection point; Customers allocated to the respective initial collection point)=
{(3; 10, 11, 12, 21, 22, 23), (4; 3, 18), (6; 1, 2, 4, 6, 9, 15,19, 24, 25, 26, 27, 28, 29, 30), (7; 5, 7, 8, 13, 14, 16, 17, 20)}
(Initial collection point; Volume of returned products per collection)= {(3; 498), (4; 224), (6;760), (7;496)}
(Centralized return center; Initial collection point)= {(1 : 4,6), (2; 3,7)}
(Centralized return center; throughput capacity)= {(1; 984), (2; 994)}
Total annual cost of renting initial collection points $800
Total cost of establishing centralized return centers $6,000
Totalinventory carrying costs $35,350
Total handling costs $21,250
Total transportation costs $148,170
Total annual reverse logistics costs $211,570

Table 7
A sensitivity analysis with the varying maximum holding period

Maximum holding periods

1 day 2 days 3 days 4 days

Total cost $251,420 $245,803 $213,000 $211,570
Number of centralized return centers 2 2 2 2
Number of collection points 4 4 4 4
{(Centralized return center;
Collection point)} {(1;6,8),(5;4,7)} {(1;6,8),(5;4,7)} {(1; 6,7), (5;3,4)} {(1;4,6),(2;3,7)}
{(Collection point; Holding {(4;1),(6;1), {(4;2),(6;1), {(3;3),(4;3), {(3;3),(4;4), (6;2),
period)} (7;1),(8;1)} (7;1), (8;2)} (6;2),(7;2)} (7;2)}
Difference in total cost 100% 98% 85% 84%

Table 8
A sensitivity analysis with varying proximity of initial collection points

Proximity

17 miles 21 miles 25 miles 29 miles

Total cost $240,120 $228,130 $211,570 $198,140
Number. of centralized
return centers 3 2 2 2
Number of collection
points 8 6 4 3
{(Centralized return
center; Collection {(2; 3,5,8), (3;2), {(1; 1,4,5,10),
point)} (5;4,7,9,10)} (3;2,9)} {(1; 4, 6), (2;3,7)} {(1;9), (2;1,5)}
{(Collection point; {(2;4), (3;6), (4;7),
Holding period)} (5;3), (7,3),(8,5),(9,5), {(1;3), (2;4), (3;4), {(3;3), (4;4), (6;2), {(1;2), (5;1),

(10,6)} (4;6),(8,3),(9,4)} (7;2)} (9;4)}
Difference in total cost 100% 95% 88% 83%
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Table 9
A sensitivity analysis with varying unit inventory carrying cost

Unit inventory carrying cost

0.01 0.05 0.1 0.15

Total cost $175,248 $196,925 $211,570 $214,345
Number of centralized return
centers 2 2 2 2
Number of collection points 5 4 4 4
{(Centralized return center;
collection point)} {(1; 4,6,9), (2;3,10)} {(1; 4,6), (4;1,8)} {(1; 4, 6), (2;3,7)} {(1; 4, 6), (2;3,7)}
{(Collection point; Holding {(3;5), (4;5), (6;3), {(1;3), (4;6), {(3;3), (4;4), (6;2), {(3;4), (4;5), (6;2),
period)} (9;6), (10;5)} (6;2), (8;5)} (7;2)} (7;2)}
Difference in total cost 100% 112% 121% 122%

the ideal distance due to dramatic savings in total reverse
logistics cost and substantial reduction in the number of ini-
tial collection points (from eight to four).

6.3. A sensitivity analysis of unit inventory carrying cost
to the model solution

The longer the returned products were held at the initial
collection point, the greater the saving in transportation cost,
but the larger the inventory carrying cost that was incurred.
Considering such a tradeoff, it would be worthwhile exam-
ining interplay between inventory carrying cost and trans-
portation cost. As such, we experimented on the model with
varying unit inventory carrying costs (e.g., $0.01, $0.05,
$0.1, and $0.15), while keeping unit freight rate constant at
one dollar. A result of the sensitivity analysis summarized in
Table 9shows that the total reverse logistics cost was very
sensitive to changes in unit inventory carrying cost (e.g.,
100%, 112%, 121%, and 122%). This result suggests that
inventory control at the initial collection point is the key to
successful reverse logistics operations for the returned prod-
uct and a high-value product (e.g., an A-item in ABC classi-
fication) should require faster shipment and shorter holding
time than a low-value product.

6.4. A sensitivity analysis of genetic algorithm parameters
to the model solution

To reveal the effect that key parameters (i.e., population
size and the maximum number of generations) of the pro-
posed GA have on model solutions, we experimented the
model with ten different sets of parameters. As summarized
in Table 5and Fig. 6, the model solution seems to be in-
sensitive to changes in population size and the maximum
number of generations.

None of differentials in total reverse logistics cost ex-
ceeded $5,000. For example,Fig. 6 shows that six different
combinations of GA parameters produced either identical or
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Fig. 6. A sensitivity to changes in GA parameters.

nearly-identical results. In other words, changes in popula-
tion size and the maximum number of generations for GA
do not affect the model solution significantly. This also im-
plies that the proposed GA solution procedure is robust to
changes in GA parameters.

7. Concluding remarks and future research directions

Since both initial collection points and centralized return
centers play a key role in successful operations of reverse lo-
gistics operations, the location/allocation decisions regard-
ing the initial collection points and centralized return centers
all but determine the success and failure of reverse logis-
tics operations. This paper proposes a mathematical model
and GA which aim to provide a minimum-cost solution
for the reverse logistics network design problem involving
product returns. The proposed model and solution proce-
dure consider explicitly, trade-offs between freight rate dis-
counts and inventory cost savings due to consolidation and
transshipment. As such, the model and solution procedure
enables reverse logisticians to determine the exact length of
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holding time for consolidation at the initial collection points
and total reverse logistics costs associated with product re-
turns. Computational experimentation reveals that GA pre-
sented a promise in solving practical-size problems with 30
customers, 10 potential sites of initial collection points, and
five potential sites of centralized return centers. Also, the
model and solution procedure produced the multi-echelon
reverse logistics configuration that considers the interplays
between initial collection points and centralized return cen-
ters. Despite numerous merits, the proposed model and so-
lution procedure point to a number of directions for future
work:

(1) The model can be expanded to include the element of
risk and uncertainty involved in the reverse logistics
network design problem.

(2) The theme of future research should include multi-
objective treatments of the reverse logistics network
design which explicitly analyze the tradeoffs among
cost, response time, market potential, and speedy
returns.

(3) The consideration of what-if scenarios involving
changes in parameter values over time may be explored
in the future.

(4) The comparisons of GA to other heuristics such as
Lagrangian relaxation, heuristic concentration, and
tabu search methods are worth investigating in future
studies.

(5) The multi-echelon hierarchical network configuration,
which considers the options of both direct shipment
from customers to centralized return centers and indirect
shipment through initial collection points, may be an
intriguing subject for further studies.

Acknowledgements

The authors wish to thank the UPS Foundation for partly
sponsoring this research. This research was also supported
in part by Grant Number R01-2003-000-10077-0 available
from the interdisciplinary program of the Korean Science
and Engineering Foundation.

References

[1] ReturnBuy. The new dynamics of returns: the profit, customer
and business intelligence opportunities in returns. Ashburn,
Virginia; White Paper; 2000, ReturnBuy.com.

[2] Rogers DS, Tibben-Lembke RS. Going backward: reverse
logistics trends and practices. Nevada, Reno: Reverse
Logistics Executive Council; 1999.

[3] Shear H, Speh TW, Stock JR. The warehousing link of reverse
logistics. Presented at the 26th annual warehousing education
and research council conference, San Francisco, CA;
2003.

[4] Poirier CC. Using models to improve the supply chain. Boca
Raton, FL: St. Lucie Press; 2004.

[5] Stock JR, Reverse logistics. White Paper, Oak Brook, IL:
Council of Logistics Management; 1992.

[6] Min H. A bi-criterion reverse distribution model for product
recall. Omega 1989;17(5):483–90.

[7] Caruso C, Colorni A, Paruccini M. The regional urban solid
waste management system: a modeling approach. European
Journal of Operational Research 1993;70:16–30.

[8] Melachronoudis E, Min H, Wu X. A multiobjective model
for the dynamic location of landfills. Location Science
1995;3(3):143–66.

[9] Del Castillo E, Cochran JK. Optimal short horizon distribution
operations in reusable container systems. Journal of the
Operational Research Society 1996;47(1):48–60.

[10] Barros AI, Dekker R, Scholten V. A two-level network for
recycling sand: a case study. European Journal of Operational
Research 1998;110:199–214.

[11] Thierry M. An analysis of the impact of product recovery
management on manufacturing companies. PhD thesis,
Erasmus University, Rotterdam, The Netherlands; 1997.

[12] Krikke HR. Recovery strategies and reverse logistics network
design. PhD thesis, University of Twente; Enschede, The
Netherlands; 1998.

[13] Krikke HR, Kooi EJ, Schurr PC. Network design in reverse
logistics: a quantitative model. In: Stähly P, editor. New trends
in distribution logistics. Berlin, Germany: Springer; 1999. p.
45–62.

[14] Jayaraman V, Guide Jr. VDR, Srivastava R. A closed-
loop logistics model for remanufacturing. Journal of the
Operational Research Society 1999;50:497–508.

[15] Jayaraman V, Patterson RA, Rolland E. The design of
reverse distribution networks: models and solution procedures.
European Journal of Operational Research, 2003;150(2):
128–49.

[16] Fleschmann M, Krikke HR, Dekker R, Flapper DP. A
characterization of logistics networks for product recovery.
Omega 2000;28:653–66.

[17] Stock JR. The seven deadly sins of reverse logistics. Material
Handling Management 2001;56(3):5–10.

[18] Anonymous, Return to sender, Modern Materials Handling
2000;55(6):64–5.

[19] Nemhauser GL, Wolsey LA. Integer and combinational
optimization. Chichester: England: Wiley; 1988.

[20] Schrijver A. Combinatorial optimization: polyhedra and
efficiency. Berlin: Germany: Springer; 2003.

[21] Goldberg DE. Genetic algorithms in search, optimization and
machine learning. Reading, MA: Addison-Wesley; 1989.

[22] Gen M, Cheng R. Genetic algorithms and engineering
optimizations. New York: Wiley; 2000.

[23] Gen M, Choi J, Tsujimura Y. Genetic algorithm for
the capacitated plant location problem with single source
constraints. Proceedings of seventh European congress on
intelligent techniques and soft computing, Session CD-7;
1999.

[24] Jaramillo JH, Bhadury J, Batta R. On the use of genetic
algorithms to solve location problems. Computers and
Operations Research 2002;29:761–79.

[25] Zhou G, Gen M. Genetic algorithm approach on multi-
criteria minimum spanning tree problem. European Journal of
Operational Research 1999;114:141–52.



H. Min et al. / Omega 34 (2006) 56–69 69

[26] Palmer CC, Kershenbaum A. An approach to a problem
in network design using genetic algorithms. Network 1995;
26:151–63.

[27] Zhou G, Min H, Gen M. A genetic algorithm approach to the
bi-criteria allocation of customers to warehouses. International
Journal of Production Economics 2003;86(1):35–45.

[28] Glover F, Laguna M. Tabu search. Norwell, MA: Kluwer
Academic Publishers; 1997.

[29] Chu PC, Beasley JE. A genetic algorithm for the generalized
assignment problem. Computers and Operations Research
1997;24(1):17–23.


	A genetic algorithm approach to developing the multi-echelon reverse logistics network for product returns
	Introduction
	Relevant literature
	Problem definition
	Model design
	Indices
	Model parameters
	Decision variables
	Mathematical formulation

	Model application and results
	Genetic algorithm development
	Encoding

	Genetic operators
	Cloning operator
	Parent selection operator
	Crossover operator
	Mutation operator
	Fitness function

	An overall GA solution procedure

	Model experiments with sensitivity analysis
	A sensitivity analysis of the maximum holding period to the model solution
	A sensitivity analysis of locations of initial collection points to the model solution
	A sensitivity analysis of unit inventory carrying cost to the model solution
	A sensitivity analysis of genetic algorithm parameters to the model solution

	Concluding remarks and future research directions
	Acknowledgements
	References


