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Abstract. We consider a tractable affine stochastic volatility model that generalizes the seminal Heston model
by augmenting it with jumps in the instantaneous variance process. In this framework, we consider
both realized variance options and VIX options, and we examine the impact of the distribution of
jumps on the associated implied volatility smile. We provide sufficient conditions for the asymptotic
behavior of the implied volatility of variance for small and large strikes. In particular, by selecting
alternative jump distributions, we show that one can obtain fundamentally different shapes of the
implied volatility of variance smile—some clearly at odds with the upward-sloping volatility skew
observed in variance markets.
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1. Introduction. There is a vast and lively literature investigating the presence of jumps
in the evolution of financial assets. In a seminal paper, [15] proposed the class of affine jump-
diffusion processes, a flexible and tractable modeling framework allowing for jumps both in
asset prices and in their stochastic variances. Since then, affine models have been applied
empirically in a number of studies, including [8], [12], [17], and [16] among others. These
studies generally find evidence for discontinuities both in the price level and its volatility.
In particular, the consensus appears to be that jumps are needed to capture the steep and
negative skew observed in the short end of the volatility surface implied by equity options.
We refer to [15] and [19] for a detailed analysis of the effect of jumps when calibrating affine
models to S&P500 option prices.

A substantial body of literature considers the pricing of derivatives written on the volatility
or the variance of an asset such as realized variance options or options on the CBOE’s VIX
index. In contrast to the case of equity markets, the volatility surface implied by volatility
options is characterized by an upward-sloping smile. As indicated by [34], this stylized feature
reflects the fact that out-of-the-money call options on volatility provide protection against
market crashes. To compensate for the insurance risk, the writer of a call on volatility will
charge a premium accordingly, very much like the writer of a put on the stock or index
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itself. Several authors suggest that the inclusion of jumps in the volatility process provides
a parsimonious and empirically justifiable way to capture the positive skew associated with
volatility derivatives. Among them, [33], [34], and [29] propose augmenting the popular square-
root dynamics of [24] to include exponential jumps in the instantaneous variance process.

Despite the common notion that jumps are a useful modeling ingredient, the question of
how to model the distribution of jumps and its financial implications seems to be a matter
of lesser attention. A number of different jump specifications have been examined within the
literature concerning equity derivatives. For example, [30] and [9] compare the performances of
alternative affine models when calibrated to S&P500 option prices. These studies indicate that,
ceteris paribus, the specific choice of jump distribution has a minor effect on the qualitative
behavior of the skew and the term structure of the implied volatility surface of equity options.
This might be the reason why the discussion about jump selection is basically absent from
the literature on volatility derivatives. To the best of our knowledge, the above-mentioned
exponential distribution appears to be the standard choice to model jumps in the instantaneous
variance.

As a matter of fact, several authors have looked at alternative volatility dynamics based on
diffusive or more general continuous paths processes. To name a few, [14] considers logarithmic
Ornstein-Uhlenbeck (OU) stochastic volatility models, [20] proposes a double mean reverting
volatility process, while [13] and [3] examine the performance of the 3/2 model. Instead, in
this work we acknowledge the presence of jumps, we fix the underlying dynamics within the
affine jump-diffusion framework, and we establish precisely how pricing of volatility options
depends on the choice of jumps in volatility. We show that the specific distribution of jumps
has a profound impact on the pricing of volatility derivatives, predicting completely different
shapes and characteristics of the VIX and realized variance implied volatility surfaces.

To keep matters simple, we consider the class of stochastic volatility jump (SVJ)-v models,
a particular case of affine models which accounts for jumps only in the dynamics of the variance
process. The SVJ-v framework allows for an enormous variety of jump distributions, and it
includes variance specifications of the OU type introduced by [4]. This latter subclass is
particularly neat, as the instantaneous variance evolves solely by jumps, which allows us to
isolate the unique impact of the jump distribution on volatility derivatives.

We start out by analyzing realized variance options. Derivatives on realized variance used
to be the preferred choice for hedging volatility and tail risk and were traded actively in
the OTC market. The main advantage of dealing with this kind of contracts in the SVJ-v
framework is that the realized variance can be identified with the integrated variance and its
Laplace transform is available in closed form. Thus, we can draw upon classical tauberian
theorems which, in combination with the results of [28] and [23] on volatility smile asymptotics,
allow us to investigate the intimate link between the distribution of jumps, the distribution
of realized variance, and ultimately the impact on the implied volatility of realized variance
options. However, following the recent financial crisis, demand has shifted to listed volatility
derivatives such as VIX options, which now constitute a quarter of the total turnover in options
on the S&P500 index. Hence, we extend our analysis to the case of VIX options, obtaining
analogous results on the impact of the jump distribution on the VIX implied volatility smile.

Specifically, for both realized variance and VIX options, we provide simple and easily
verifiable sufficient conditions relating the tail distribution of jumps with the asymptotic
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behavior of implied volatility for low as well as high strikes. We are particularly interested in
the asymptotics of the wings, i.e., whether they are upward or downward sloping, as this gives
an indication of the overall qualitative behavior of the volatility smile and skew. To support
our results, we provide numerical illustrations for a number of positive distributions for jump
specifications and we show how the commonly used exponential law might not be the optimal
choice as it inherently leads to a downward-sloping implied volatility skew.

The relevance of the analysis is not purely constrained to the academic scene. In fact, it
offers a number of applications of industrial interest. First, market makers tend to prefer quite
simple models—for many good reasons—when managing their options books, often neglect-
ing modeling jumps. Instead, to alleviate shortcomings of their model, they will make various
more or less ad hoc adjustments when hedging their delta risk. By clarifying how jumps (and
their distribution) impact the pricing of volatility options, our results give market makers a
much better handling of volatility jump risk, allowing them to ”set their delta” in accordance
with the true volatility dynamics. Similarly, for alpha investors (whether hedge funds, asset
managers, etc.) who trade volatility as an asset class, understanding the distributional prop-
erties of volatility jumps and their impact is essential for developing more accurate trading
models and forecasting future volatility.

The rest of the paper is organized as follows: In section 2 we present the necessary back-
ground on wing asymptotics and we provide some preliminary results for a general distribution
of the underlying. In section 3 we specialize the analysis to the case of realized variance op-
tions in the SVJ-v modeling framework and we derive sufficient conditions based on the jump
component for the asymptotic behavior of the smile. In section 4 we describe a number of
alternative jump distributions and present numerical illustrations for the selected cases. In
section 5 we extend the analysis to the wing asymptotics of VIX options and in section 6 we
summarize and conclude the paper. In the appendix we provide the details of some lengthy
proofs.

2. Preliminary results on wing asymptotics. We start out by outlining a few preliminary
results relating the asymptotic behavior of the implied volatility at small or large strikes to
the distribution of the underlying random quantity. To be more precise, fix a maturity T
and denote by Hrp the risk-neutral value of the underlying asset at maturity. Assuming a
simplified economy with zero interest rates and dividend payments, the price of a European
call with strike K is given by C(K) = E (Hy — K)*. The corresponding put price P(K) can
be obtained by the put-call parity relation

C(K) — P(K) = E[Hy] — K.

At this stage, we do not specify further the nature of the underlying. We only require that
Hrp is a positive random variable with finite first moment which, without loss of generality,
we normalize to one, E[Hp] = 1. The distribution function, the tail function, and the Laplace
transform of Hp are denoted by

Fy(a) =Q(Hr <), Fu(a)=1-Fy(a),  Lylz)=E[e "],

The implied volatility I(K) associated with C'(K) is defined as the solution of the equation
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I(K)VT 2 B

C(K) = (logﬂ/K) . I(K)ﬁ) o (110(%/2 Mgﬁ) |

where ®(-) denotes the cumulative distribution function of a standard normal law. If the
underlying variable Hp satisfies the condition Fy(z) < 1 for all x > 0, then I(K) is well
defined for all K > 1 and one can study the asymptotic behavior as K — oco. Similarly, if
Fr(z) > 0 for all z > 0, then I(K) is well defined for all K < 1 and it can be analyzed as
K — 0.

The analysis of I(K) at extreme strikes, referred to as smile wings, has attracted con-
siderable attention during the last decade. In a groundbreaking paper, [28] relates the smile
wings to the number of moments of the underlying distribution Hp. Since then, a large part
of the literature has been devoted to providing refinements and extensions of Lee’s moment
formulas. See, for example, the work of [5], [6], [21], [23], and the monograph by [22]. The
results relevant to this work are summarized in Theorems 2.1 and 2.3 below. The function
appearing in the formulations is given by

P(x) =2 —4(Va2 +x — ),

and g(z) ~ h(x) means that g(z)/h(z) — 1 as either + — 0 or x — oo depending on the
context. Also, recall that a positive, measurable function f on R, is said to be regularly
varying at oo with index p € R if the following holds:

o 4 (E2)
(2.1) Jim o

for all £ > 0. In this case we write f € R,. When f € Ry, then we say that f is slowly varying
at 0o. It can be shown that f € R, if and only if it takes the following form

(2.2) [(2) = 2*L(@),

where £ € Ry.
Let us start by considering the behavior of I(K) at large strikes.

—¢P

Theorem 2.1. Assume Fy(x) < 1 for all x > 0. Then the following statements hold for
the implied volatility I(K) at large strikes.
(i) Let pg =sup {p: E[Hg“] < oo}, then

I(K)T
log(K)

(2.3) lim sup =Y(py) as K — oo.

(ii) If pg < oo, then we can replace lim sup with the limit and write

log(K)
T

if and only if we can find fi1, fo € R_, with p = py, such that f1(K) < C(K) < fa(K)
for all K > Ky with Ky large enough.

(2.4) I*(K) ~ ¢(pg) as K — oo
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(iii) If pg = oo, then

1 ~1/2
(2.5) I(K) ~ Wois log(K) <log C(K)> as K — oo.

The large strike formula (2.3) is derived in [28], while statements (2.4) and (2.5) can be found
in [23]. Simple applications of Theorem 2.1 yield the following results which will be pivotal
to the analysis we carry out in sections 3-5.

Proposition 2.2. Assume Fy(x) <1 for all z > 0.

(a) Suppose that the tail function Fry € R_,_1 for p> 0. Then the asymptotic equivalence
(2.4) at large strikes holds with pg = p.

(b) Suppose that the tail function Fy is dominated by a Weibull-type function, i.e., there
exist positive constants «, 5, v > 0 and an xg > 0 such that

(2.6) Fy(z) < 'ye*axﬁ for all x> xo.
Then pg = o0 and I(K) — 0 as K — co.
Proof. Recall that

(2.7) E 1] = /0 T dEy () = (p+ 1) /0 Wy (w)du
and
(2.8) C(K):/:FH(u)du.

(a) Well-known results from regular variation theory (see, e.g., [18, VIIL.9]), state that
for a bounded ¢ € Ry and for x — oo the following holds:

x
(2.9) If ¢ < —1, then / ull(u)du converges, while it diverges if ¢ > —1.
0
it ()
2.10 Ifg<—1,then —m— 2 4 (g+1).

Hence, by virtue of (2.2) and (2.7), the first statement implies that pgy = p. The
second statement applied to (2.8) shows that C'(K) € R_, and the conclusion follows
immediately from (ii) in Theorem 2.1.
(b) Still from (2.7) we see that condition (2.6) implies that py = co. Furthermore, notice
that for ¢ € R the following holds:
xq—i—l e—axﬁ

(2.11) 27h_}nolo W = 0o0.

Hence, for K large enough, it holds that

C(K) < / ye_o‘“ﬂdu < AKe_aKﬁ,
K

where A is a positive constant, and the result now follows from Gulisashivili’s criterion
(2.5) for large strikes. [ ]
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Direct application of Proposition 2.2 might be difficult as in many models the tail function of
the underlying distribution is not known, while the Laplace transform is available in closed
form. In some cases, conditions based on Ly can be obtained via tauberian theory, which
offers a number of results relating the behavior of F near infinity/zero to that of Lx near
zero/infinity. In particular, Theorem 8.1.6 in [7] states that if n is a nonnegative integer and
p=n-4+q with p > 0and 0 < ¢ <1, then

Fy(z) € R_, if and only if (—1)”+1£%+1)(s) ~s171(1/s) ass—0,

where we have used the notation f(™ = ZZ—ZS. In view of (2.2), the equivalence above can be

translated into the regular variation of Egﬁrl)(l /) at oo as follows:

(2.12) Fu(z) € R_, ifandonlyif (—1)""'2U™(1/2) € Ry,

So, for a noninteger p, the regular variation condition required in part (a) of Proposition 2.2
may be assessed via (2.12). In contrast, we cannot find an equivalent formulation of the tail
condition (2.6) in terms of Ly unless § = 1. In this case, the domain Dy = {z € R: Ly (x)
< oo} determines whether Fyy () is exponentially dominated, since

(2.13) Fr(x) <~ve ®% forallz >zp ifandonlyif O0¢ YODH,

as one may show via Markov’s inequality.
Let us now consider the behavior of I(K') at small strikes. Once again, we start by listing
the relevant results from [28] and [23].

Theorem 2.3. Assume Fg(x) > 0 for all x > 0. Then the following statements hold for
the implied volatility I(K) at small strikes.
(i) Let gz = sup {q: E[H;] < oo}, then
I*(K)T

(2.14) lim sup Tog(1/K) =¢(qu) as K — 0.

(ii) If qg < oo, then we can replace limsup with the limit and write

log(K)

T as K —0

(2.15) I*(K) ~ 4(qm)

if and only if we can find fi, fo € R_, with p = qu +1 such that f1(1/K) < P(K) <
fo(1/K) for all K < Ko with Ko small enough.
(iii) If gg = oo, then

(2.16) I(K) ~ \/;T <logll() <log ]fl())_l/z as K 0.

The small strikes analogue of Proposition 2.2 reads as follows.
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Proposition 2.4. Assume Fy(x) > 0 for all x > 0 and that Fy is continuous.

(a) Suppose that for some p > 0, Fy(1l/x) € R_,. Then the asymptotic equivalence
(2.15) holds with index qm = p.

(b) Suppose that there exist positive constants o, 5, v > 0 and xo > 0 such that Fy
satisfies

(2.17) Fr(z) < Ve*ax_ﬁ for all = < xg.
Then the left-wing index qg = oo and [(K) — 0 as K — 0.

Proof. Since Fy is continuous, the moment E[H.. 9, ¢ > 0 can be expressed as

E[H;Y =q /OOO u? Fy(1/u)du,

while the price of a put is given by

K 00
P(K) = /0 Fr(u)du = /1 /Ku_zFH(l/u)du.

The results now follow from Theorem 2.3, proceeding in complete analogy with the proof of
Proposition 2.2. |

Similarly to the large strikes case, part (a) of Proposition 2.4 can be reformulated in terms of
the Laplace transform as a result of Karamata’s tauberian theorem. In fact, by [18, XIII.5,
Theorem 3], we have that for p > 0, the following holds:

(2.18) Fu(l/z) e R_, ifandonlyif Lg(x)eR_,

and, in this case, Ly (xz) ~T'(1 4+ p)Fr(1/z) as  — oco. As for condition (2.17) in part (b),
one may use a tauberian result of the exponential type to verify the stronger requirement that
log Fiy(z) ~ —az™B. More precisely, from de Bruijn’s tauberian theorem it follows that if

r € (0,1) and 8 > 0 satisf %—%:1, and a, s > 0, then

1
(2.19) lin%) 2 log Fyy(z) = —a if and only if  lim log L (x) = —s,
T—

T—00 x’
and in this case (rs)"/" = (a 8)'/?. See, e.g., [7, Theorem 4.12.9.],

3. Realized variance options in the SVJ-v model. In this section, we specialize the
analysis carried out above, to the case of options written on the realized variance of an asset.
Recall that the continuously sampled realized variance, hereafter denoted by V7, is defined as
the annualized quadratic variation of the log-price process over the time interval [0,7]. More
precisely, we set

(3.1) Vi = Z[X]r,

where X; = log Sy denotes the log-price and

N
X]p = li X, - X, )2
[(X]r AILHO;( tn = Xtn_1)"s

where A = t;,1 — t; is the step size of the partition 0 < t; < --- <ty =T.
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In this work, we assume that the underlying price process evolves according to an affine
stochastic volatility model known in the literature as the SVJ-v model. Specifically, we main-
tain the assumption of zero dividends and interest rates, and we model the log-price X and
its instantaneous variance v via the following risk-neutral dynamics

1
(32) dX; = —§vt dt + \/QTtth,
d’l)t = )\(9 — ’Ut)dt + O'\/FtdB + th

The processes W and B are—possibly correlated—Brownian motions while J is an increasing
and driftless Lévy process which is independent of (W, B). Thus, the unit-time Laplace
transform L£;(u) = E[e~%/1] takes the form

(3.3) Lo(u) = ™ with oy (u) = / (€= — 1), (dz), u>0,
0

where the Lévy measure v; is a measure on the positive real line such that fol zvy(dz) < oo.
Finally, the parameters A, 6, and ¢ are nonnegative constants.

The stochastic volatility model (3.2) generalizes the seminal [24] model by augmenting
the square-root process describing v to allow for jumps. Furthermore, by setting 8§ = o =0
in (3.2), we obtain the non-Gaussian OU model class proposed by [4]:

t
(3.4) v = e My +/ e*’\(t*s)dJs,
0

where the instantaneous variance moves uniquely by jumps.

The name SVJ-v refers to the fact that, in (3.2), jumps are allowed only at the variance
level, in contrast to more general affine specifications such as the SVJJ model of [15], where
both v and X are affected by jumps. The main advantage of the SVJ-v framework is that the
quadratic variation coincides with the integrated variance, and therefore the realized variance

(3.1) is given by
1 T
Vr == dt.
T T/o Ut

In affine models, such a quantity is easy to handle as its Laplace transform is known in closed
form. [15] shows that Ly (u,T) = E[e~“"7] is given by

(3.5) Ly(u,T) = eV with  ky(u, T) = au, T) 4 vof(u, T) 4 6(u, T),

where the functions «, 8, and ¢ satisfy the ODEs

o
9, 1 op u
(3.7) 5P = A+ 508
0
(3.8) 55 = rs(—B)
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with initial conditions a(u,0) = 5(u,0) = 6(u,0) = 0. For the full SVJ-v model with 6,0 > 0,
the explicit solutions read as follows:

U u) — e—’y(u)t U
(3.9) a(u,t):_iﬁlog (7( )+ A+ (y(u) — A) )_T&u

(3.10) Blu,t) = _u 2(1 — e (W)

(3.11) 5(u,t):/0 kj(—B(u,s))ds,

where y(u) = \/A? +202% . In the OU specification (3.4), the realized variance Vr can be
explicitly written as
T
(3.12) Vr = voe(T) + / e(T —t)dJq,
0
where
1—e M
3.13 t) = ———
(313) ="

and the expression for xy simplifies to

T
(3.14) ky(u, T) = —ue(T)vg —I—/O ky(ue(t))dt.

Based on the explicit form of Ly, the tauberian theory allows for a comfortable analysis of the
distributional properties of the realized variance. In particular, we are interested in analyzing
how alternative selections of the jump law J; affect Vp and, in turn, the asymptotic behavior
of the volatility curve I(K) implied by realized variance options. Consistent with the notation
adopted so far, we write F;, Fy for the distribution functions of J;, Vo and Fy, Fy for the
corresponding tail functions.

We start with a preliminary lemma stating that moment finiteness and regularly varying
tail are properties which J; passes on to Vr basically unchanged. The proof is based on
a careful examination of the ODEs (3.6)—(3.8), and makes use of the tauberian equivalence
(2.12). Although quite simple, the derivation is somewhat lengthy and therefore the details
are reported in the appendix.

Lemma 3.1. In the SVJ-v model (3.2) the following hold.
(i) If p >0, then E[J¥] < co if and only if IELVC,E] < 0.

(ii) If Fy € R_, with p > 0 noninteger, then F'yy € R_,. In the OU subclass (3.4), the
statement holds for arbitrary p > 0.

Statement (i) shows that to guarantee E [V] < oo and enable a meaningful analysis of options
written on Vp, we need to assume

o0
(3.15) E[J1] < oo or, equivalently, / zvy(de) < oo.
0
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In addition, we see that denoting
(3.16) pJ = sup {p : E[Jf“] < oo} ,

Lee’s formula (2.3) at large strikes holds with index py = p;. Proposition 3.2 below illustrates
further how the tail properties of the jump distribution determine the behavior of the implied
volatility I(K) at large strikes.

Proposition 3.2. In the SVJ-v model (3.2) the following hold.

(a) Suppose that Fj € R_, 1 with p > 0 noninteger. Then the large strikes asymptotic
equivalence (2.4) holds with py = p. In the OU subclass (3.4), the statement holds for
arbitrary p > 0.

(b) Suppose that F; is exponentially dominated

Fi(z) <~ve ®*  forall z>xg

with «, v > 0 and xy large enough. Then py = oo and I(K) — 0 as K — o.

Proof. Statement (a) follows directly from Proposition 2.2(a) and Lemma 3.1(ii). As for
statement (b), (2.13) implies that x(up) < oo for a ug < 0. A simple inspection of (3.9)-
(3.11) shows that there exists u; < 0 such that ky (u1) < oo, and the conclusion follows from
Proposition 2.2(b). [ ]

Let us now examine the impact of the jump distribution on the implied volatility at small
strikes. It turns out that in SVJ-v specifications comprising a diffusion component, jumps
have no effect on the asymptotic behavior of the left wing of I(K), which always vanishes to
Zero.

Proposition 3.3. Consider the SV.J-v model (3.2) with o > 0. Then, for any choice of jump
distribution Jy, it holds that gy = oo and I(K) — 0 as K — 0.

Proof. Let s = /=2,. From (3.9), (3.10), we see that lim, awDH6wT) — g Fur-

ul/2

thermore, B(u,t) > —su'/? for all u,t > 0 and from (3.11) it follows that

Try(su?) <6(u,T) <0 forall u>0.

—u1/2s:c .
Since 1—eu1 73 < min(sz, 1) for all v > 1, we can use a dominated convergence argument
. 1/2 . . .
to show that limy—e "5~ = 0, so that limy_e 2422 = 0. All in all, it holds that
limy—soo loguﬁl}/z(u) = —s and the result follows from de Bruijn’s tauberian equivalence (2.19)
and Proposition 2.4(b). [ |

To obtain a more flexible behavior of I(K') at small strikes, we need to stay within the OU
model subclass. However, from expression (3.12) we see that Vp is bounded from below by
vo€e(T) and, therefore, the asymptotic analysis as K — 0 is meaningful only if vy = 0.
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Proposition 3.4. Consider the OU model (3.4) with vo = 0, and assume Fj is continuous.
Then, the following hold.
(a) Suppose that Fy(1/x) € R_, with p > 0. Then the asymptotic equivalence (2.15)
holds with small strikes index qy = pT'.
(b) Suppose that log Fy(z) ~ —ax™ as © — 0 with o, 3 > 0. Then qy = oo and
I(K)— 0 as K — 0.

Proof. Part (a): By Karamata’s equivalence (2.18), it holds that £;(x) = z=P¢(z) with
¢ € Ry. Also, recall a result from [27, IV.2], stating that if £ € Ry, then for any 6 > 0, there
are positive constants b and B such that

-5 é

1 1

(3.17) b ut < () <B vt whenever 0 < v < u < oo.
v+1 £(v) v+1

Then, using the hypothesis vg = 0, we obtain from (3.14) that, for a £ > 0, the following
holds:

~ exp /OT log (xlggo m) R

where, to interchange limit and integral, we have applied a dominated convergence argument
based on (3.17). Therefore, Ly € R_,r and the statement follows from Proposition 2.4(a).
As for assertion (b), set r and s as in (2.19) and use (3.14) to obtain

T
i 08 Lv (@) :/
0

T—00 x’

L (e(t)
T—00 x’

T
dt = —s/ e(t)"dt,
0

where, once again, we have used a dominated convergence argument based on the monotonicity
of kj. The conclusion follows from Proposition 2.4(b). [ ]

4. Numerical examples. In this section we consider a selection of positive distributions
of the jumps J and we illustrate how such a choice impacts the associated realized variance
smile I(K) for a fixed maturity 7. The numerical examples we provide are based on the OU
subclass (3.4) with vy = 0, as this specification, in contrast to the full SV.J-v model, allows for
both an upward-sloping and a downward-sloping behavior of the left wing. For the unit-time
jump distribution Ji, we consider the gamma, the inverse gamma, and the generalized inverse
Gaussian laws and we refer to the corresponding model specifications as the OU-I', OU-IT,
and OU-GIG models.

Recall that a gamma distribution I'(«, 8) has density function fr and Laplace transform
Lr given by

fr(z) = ﬁxaflefﬁml Lr(u) = <1 + u> h
r T(a) x>0, r 3 :
Since 0 € D, Proposition 3.2(b) predicts that in the OU-I" model, the smile I(K) is downward
sloping to zero as K — oo. Also, we see that Lr is a regularly varying function of index —«
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at infinity. By Proposition 3.4(a) we can conclude that I(K) — oo as K — 0, in accordance
with the asymptotic equivalence (2.15) with index gy = oT.

In the OU-IT specification, we choose J; distributed according to an inverse gamma law
IT(v, ). The density function frr and Laplace transform L are given by

v u v/2
fir(z) = F/zy)ﬂcwflef“/xlxzo, Lir(u) = Q(llf(g)Ku(v dpu),

where K, is the modified Bessel function of the second kind. Since f;r € R_,,_1, we see from
(2.10) that the corresponding survival function Frr € R_,. Hence, to price realized variance
options in the OU-IT model, we need to impose that v > 1. Furthermore, Proposition 3.2(a)
shows that for large strikes, the associated volatility curve I(K) follows the asymptotic equiv-
alence (2.4) with py = v — 1. For the small strikes behavior, we can use the fact that for large

arguments K, (z) ~ /5-€7* (see [1, p. 378]), and show that lim, e bglﬁ%(u) = —4p < 0.
Therefore, Proposition 3.4(b), combined with de Bruijn’s tauberian result (2.19), implies that
I(K) —»0as K — 0.

Finally, we consider the OU-GIG specification, where the law of J; is given by generalized

inverse Gaussian distribution GIG(p, a,b) with density and Laplace transform given by

1 —1 21
fara(z) = %wA_162(a T ), Lara(u) = <

B2 \"? K,(\/a2( + 2u))
b2 + 2u K, (ab) ’

As above, K, denotes the modified Bessel function of the second kind and it is immediate

to see that limy,_eo w < 0. Also, 0 € ZO)GIC;, and in virtue of Proposition 3.2(b) and

Proposition 3.4(b) we 021;171 conclude that I(K) — 0 both at small and at large strikes.

In all the model specifications introduced above, the realized variance call price C(K)
and the associated implied volatility I(K) can be computed by means of Fourier transform
methods. In fact, [10] shows that the Laplace transform L of the call price C(K) can be
expressed as

(4.1) Lo(u) = /0 " ek o yar = LW =1 EVI]

u2 U

Applying a Laplace inversion algorithm to (4.1) allows us to obtain prices of options on realized
variance for a sequence of variance strikes. Figure 1 plots implied volatilities against variance
strikes for the three selected models. We consider a maturity of 3 months and we set the
parameters of the different jump distributions so that the mean and the variance are the same
across the alternative specifications. In particular, we take o = 18 and = 22.8 in the gamma
case, v = 20 and u = 15 for the inverse gamma, and p = —0.5, a = 3.7697, and b = 4.7749 for
the GIG distribution. The value of A is the same in all cases and it is equal to 8. The plots
confirm that in the OU-I" case, the implied volatility of variance smile is downward sloping,
clearly at odds with the upward-sloping smile observed in variance markets. In contrast, the
OU-IT model implies an upward-sloping smile, and finally, in the OU-GIG specification, we
observe a frown.
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Figure 1. Implied volatilities of variance for the OU-gamma with parameters a = 18, 8 = 22.8 (top),
OU-inverse gamma with v = 20, u = 15 (middle), and OU-IG with a = 3.7697, b = 4.7749 (bottom). In all
cases we take A = 8 and vo = 0 and we obtain the parameters of the different jump specifications by matching
the mean and the variance.

To further support these observations, we investigate the sensitivity of the implied volatil-
ity of variance with respect to the parameters of the jump distribution in Figures 2—-4. To
disclose the ceteris paribus effects on the implied volatility, we change one parameter while
keeping any remaining parameters fixed. For each parameter set, we plot the implied volatil-
ity curve against variance strikes. For the selected jump distributions, we make the common
observation that while altering the parameters of the distribution changes the levels of implied
volatility and the wideness of the smile in variance strikes, the shapes of the implied volatility
curves persist across different parameter values.
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Figure 2. OU-gamma parameter sensitivities. Base case parameters: a = 18, f = 22.8, A = 8, and vo = 0.
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Figure 3. OU-inverse gamma parameter sensitivities. Base case parameters: v =20, up = 15, A = 8, and
Vo = 0.
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Figure 4. OU-IG parameter sensitivities. Base case parameters: a = 3.7697, b = 4.7749, A = 12, and vo = 0.
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5. VIX options. Since 2006 options have traded on CBOFE’s VIX index and constitute
today a relatively liquid market of variance derivatives. The VIX index tracks the price of
a portfolio of options on the S&P500 index (SPX index). As shown by [11], VIX squared
approximates the conditional risk-neutral expectation of the realized variance of SPX over the
next 30 calendar days. As such, it can be interpreted as the fair swap rate of a variance swap—
an OTC contract in which one exchanges payments of realized variance against receiving a
fixed variance swap rate.

It is immediate to show that under the general SVJ-v dynamics (3.2), the VIX squared—
the price of future realized variance—is simply given by an affine transformation of the in-
stantaneous variance

1 rir
(5.1) VIXZ = Ep [ f;ur futdt] = avp + b,
T
where
1 — AT
(5.2) a=—(1—-e"7),
AT

=<Egﬂ+e>a—ay

and 7 = 30/365.

Extending the previous analysis of realized variance options, we now examine the impact
of the jump-distribution J on the price of options written on the VIX index. In the notation
of section 2, we are therefore interested in the asymptotic behavior of the volatility curve I(K)
implied by options with underlying

Hy = VIXp = \Javr + b.

We see from (5.2) that in the SVJ-v framework the VIXr is bounded away from zero by the
quantity b, for any parameter choice and any maturity 7. Thus, we only consider the volatility
curve at large strikes K' — oo, as I(K) is not defined for K — 0.

Also, recall that the Laplace transform of the instantaneous variance £, (u,T") = E[e™"7]
is given by

(5.3) Ly(u, T) =exp (a(u, T) +voB(u, T) + 0(u,T)),

where the functions «a, 8, and § satisfy the ODEs

o)
0 _ 1 202
(5.5) 5= A8+ 5078
)
(5.6) aaznx—m,
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with initial conditions a(u,0) = 6(u,0) = 0 and (u,0) = u. Similarly to the realized variance
case, a detailed analysis of the ODEs (5.4)—(5.6) reveals the close connection between the tail
function Fy of the jump distribution J; and the tail function F, of the instantaneous variance
vr. The main results are reported in Lemma 5.1 below. The derivations are omitted, as they
follow closely the proof of Lemma 3.1.

Lemma 5.1. In the SVJ-v model (3.2) the following hold.

(i) If p >0, then E[JV] < oo if and only if E[v}] < co.
(ii) If Fy € R_, with p > 0 noninteger, then F, € R_,. In the OU subclass (3.4), the
statement holds for arbitrary p > 0.

We see immediately that in order to price VIX options in the SVJ-v model, we need to assume

that E[Jll/z] < oo. Furthermore, the large strikes Lee’s formula (2.3) holds with index

p+1
PVIX = Sup {p:E[J12 ] <oo}.

The analogue of Proposition 3.2 for VIX smiles at large strikes reads as follows.

Proposition 5.2. In the SV.J-v model (3.2) the following hold.

(a) Suppose that Fj € R_, with p > 1/2 noninteger. Then the large strikes asymptotic
equivalence (2.4) holds with pyrx = 2p — 1. In the OU subclass (3.4), the statement
holds for arbitrary p > 1/2.

(b) Suppose that Fj is exponentially dominated. Then pyrx = oo and I(K) — 0 as
K — oo.

Proof. From (5.1), we see that

Fyrx(z) =F, (1;2 — b> -

a

From the definition of regular variation it follows that if F, € R_,, then Fyrx € R_5,.
Therefore part (a) follows immediately from Lemma 5.1 and Proposition 2.2(a). As for part
(b), inspection of (5.4)—(5.6) shows that F; is exponentially dominated if and only if F,, is
exponentially dominated, which in turn implies that Fy-;x is exponentially dominated. The
conclusion follows from Proposition 2.2(b). [ |

We conclude this section by providing some numerical examples illustrating the behavior
of VIX smiles implied by different jump distributions. We consider the full SVJ-v specification
obtained by augmenting the Heston model with compound Poisson jumps, i.e.,

N(¢)
(5.7) Jy = Z Zi, Z; ~ independently and identically distributed Z,
i=1

where N(t) is a Poisson process with intensity ¢ while Z denotes the positive jump-size distri-
bution. As mentioned in the introduction, this variance process, equipped with exponentially
distributed jumps, has been used with the intent to capture the observed upward-sloping skew
of VIX options. Here, besides this specification and the purely diffusive Heston model, we also
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Figure 5. Implied volatilities of VIX options for: the Heston model with vo = 0.0348, A = 1.15, 0 = 0.0348,
o = 0.39 (top), the SVJ-v model with exponential jumps with £ = 1.5 and 1/8 = 0.3429 (middle), and the
SVJ-v model with inverse gamma jumps with v = 4.5 and u = 1.2 (bottom). The jump parameters are chosen
so that E[Z] is the same in both jump specifications.

consider the case of inverse gamma jumps Z ~ IT'(v, u). Figure 5 plots the implied volatilities
against strikes in the three different cases. We consider 3-month options and we use Heston
parameters from [2], vg = 0.0348, A = 1.15, § = 0.0348, o = 0.39, obtained by calibration to
out-of-the-money options on the S& P500 index. One observes that, when using parameters
fitted to equity option quotes, the VIX implied volatility skew is downward sloping. Next, we
augment the Heston model with exponential jump sizes Z ~ I'(1, §) with mean 1/8 = 0.3429.
The intensity is set to £ = 1.5. Once again, we obtain a downward-sloping skew. However,
if we maintain the same diffusive component, the same intensity level £, but we substitute
for the jump size with an inverse gamma law Z ~ IT'(v, 1), we observe a dramatic change in
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the shape of the VIX implied volatility. Specifically, this leads to an upward-sloping skew as
shown in Figure 5. The inverse gamma jump parameters are v = 4.5 and p = 1.2 and they
have been obtained so that the first moment of Z is the same as in the exponential case.

6. Conclusion. We have considered options on the realized variance and the VIX index in
the SVJ-v model, a tractable affine stochastic volatility model that generalizes the [24] model
by augmenting it with jumps in the instantaneous variance. The model allowed us to isolate
the unique impact of the jump distribution and we have shown that it has a profound effect
on the characteristics and shape of the implied volatility of the variance smile. We provided
sufficient conditions for the asymptotic behavior of the implied volatility of variance for small
and large strikes. In particular, we showed that by selecting alternative jump distributions, one
obtains fundamentally different shapes of the implied volatility smile. Some distributions of
jumps predict implied volatilities of variance that are clearly at odds with the upward-sloping
volatility skew observed in variance markets.

7. Appendix.

Proof of Lemma 3.1, part (i). We start by recalling a few basic facts relating the (possibly
infinite) moments E[HP], p > 0, of a nonnegative random variable H to its Laplace transform
Ly. Fix p>0,n¢€Z", and r so that n = p+r with 0 < r < 1. Then the moments can be
expressed as follows

(7.1) E[H"] = (-1)"L} (0+)

and

E[H?) = (r (i))n /0 b w1 L (w)du,

where we have employed the usual notation f (")(u) = (ZL—n,L f. Here, as well as throughout the
paper, we have implicitly used the fact that Ly is infinitely differentiable in the interior D of
its domain Dy = {u € R: Ly (u) < oo}, and

(=)L () = E [H"e ] < o0

for any u € D; see, e.g., [25, section 4.19.], Using the representation E[H"e “] =

E[l(Hgl)H”e*“H] + E[l(H>1)H"e*“H], and applying a dominated convergence argument to
the two terms, we see that

(—1)”£§?) (u) =0 as u — 00

for any nonnegative integer n. Therefore, for any fixed ug > 0, and n > 0, it holds that

[e%¢} uo
(—U"/O LY (w)du < (—1)"/0 w LG (ydu + (=)D L (ug),

and we can conclude that

uo
(7.2) E[H?] < 00 <= (—1)"/ u’"_lﬁgﬁ?)(u)du < +00.
0
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Next, recall that applying the Faa di Bruno formula, we can express the nth derivative E%)

in terms of Bell’s polynomials B,, (z1, 2, ..., Zn—k+1) as follows:
(7.3) E;}L) =Ly Z By ke (Hg), mg), R ng_kﬂ)) ,
k=1

where kg (u) = log L (u), and

n! T1\J1 29\ J2 Ty ki1 In—k+1
1) Buonan. )= Y (BY ()7 (i Y
(74)  Bug(an,zz,...) ASTVART (n—k+ 1)l

Jilgal - gk

and the sum is taken over all sequences j1, j2, .. ., jn—k+1 Of nonnegative integers such that

Jitjet o+ ki1 =k,
+2jp+ 4+ n—k+1)j,ksr1 =n.

For the derivation of the Bell’s polynomial version of the Faa di Bruno formula, we refer to [31]
and [26]. For ease of reference, we collect the next few observations in the following lemma.

Lemma 7.1. Fixp>0,n€Z", andr so thatn =p+r with 0 <r < 1. Assume that
(7.5) (—1)mmgﬂ) (u) >0 forallu>0and1 <m<n.

Then the following hold.
(a) For all1 <k <mn, it holds that

(7.6) (—1)"Bpx (/ﬁl(l_}), K2 ng;-k“)) > 0.
(b) For the integer nth moment it holds that
(7.7) E[H"] < 00 <= (—1)"s{"(0+) < o0
and, for the noninteger moment of order p > 0, it holds that

uo
(7.8) E[H] < 00 <= (—1)" / R () du < oo,
0

where ug > 0 s arbitrary.

Proof. Notice that

j j
"B CY NG _ n! 1)(G1+2j2+-) “g) 1 Hg) ’
(0" Bug (vl ) = Y (D) o) )

T
J1+jot-=k J1:72:

= X ! <(_1)Hg)>]1 ((—1)%&3))32

- i1 1500 1 5 N
j1+j2+"':k} ]1 32
j142ja+-=n
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from which we see that statement (a) holds. As for statement (b), from (7.1), (7.3), and (7.6)
it follows that

E[H"] < oo <= Y (~1)"Buy (mg})(oﬂ,m}f)(oﬂ,...) <
k=1
— (-1)"Bpn (f{g)(OJr), mg)(OJr), . > < 0o forall 1 <k <mn.
The direct implication ”=-" in (7.7) follows from the fact that By, 1 (x1, 22, ... ) = =, . Since
(—1)”,%&?)(0—1—) <00 = (—1)ml<&gn)(0+) < oo forall 1 <m <n —1 the converse implication

is immediate, and we can conclude that (7.7) holds. We now apply similar arguments to the
case of a noninteger p. From (7.2), (7.3), and (7.6) it follows that

n o
E[H?] < 0 <= Z/ Lp(u)u (=1)"By,x (HS)(U),Hg)(U), . ) du < 00
k=10
g
= / U (=1)" Bk (ﬁg)(u), /{g)(u), . ) du < 00 forall 1 <k <n.
0

Once again, the direct implication = in (7.8) is straightforward. For the converse, notice that

“ (n) o (m)

(—1)"/ u Ry (u)du < oo = (—1)”/ Ky (uW)du < 0o = (—1)™k" (04) < o0
0 0

forall 1 <m <n—1. Since By, ;, (x1,%2,...), kK =2,...,n, do not depend on z,, we see that

up ug
(—1)"/ u“lfigl) (u)du < oo = / " (=1)" Bk <I€S)(’u,), mg) (u),.. ) du < 0o
0 0

for all 1 <k <n, and we can conclude that (7.8) holds. [ ]

Consider now the unit-time law J; of the jump process. Differentiating expression (3.3)
we obtain

(7.9) (—1)”/£Sn)(u) = /000 ze "“ry(de) >0 forall u>0,n>1.
Thus, from Lemma 7.1 it follows that
(7.10) E[J]] < o0 <= /OOO 2"vy(dr) < oo
and, for a noninteger p > 0,
E[JT] < oo < (-1)" /Ouo urflﬁf,n)(u)du < o0

(7.11) (z)/ Py (zug; r)vy(de) < oo,
0
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where v(x;7) denotes the incomplete gamma function v(z;7) f ¢" e 9dg. In fact, both
(7.10) and (7.11) can be obtained from well-known results linking the moments of an infinitely
divisible distribution to those of its Lévy measure; see, e.g., [32, Corollary 25.8.], However,
the structure of the integrated variance V7 is more complex, and we will resort to Lemma 7.1
to estimate its moments. First we show that sy fulfills the assumption (7.5). Differentiate
expressions (3.5) and (3.6)—(3.8) to obtain that

(7.12) & (u, T) = o (u, T) + 108" (u, T) + 6™ (u, T),  u>0,
where A1), 8(2) . solve the ODEs
0
250 — g 2p(1) _ =
(7.13) atﬁ ABYY + o7 Bp T
(7.14) QW) = n 4 02 Z ") g g, n>2
ot -
with initial condition SV (u,0) = B (u,0) = - - = 0, while (™, 5 solve
0
1 Zam = (n)
(7.15) 5 ON3
0 o
1 Y sn) —
(7.16) 51 a3 (B1(=5))

with (™ (u,0) = 60 (u,0) = 0 for all n > 1. Since § < 0, from (7.13)—(7.15) it follows that
(—=1)"8™ >0 and (—1)"a™ > 0 for any n > 1. As for 6", set

L(u,t,x) = e
and integrate (7.16) to obtain

8 (u,T) = /T /OO LM (u, t, z)vy(x)dxdt
(7.17) - Z/ / L(u, t,2) By (5(1)(u,t),5(2)(u,t),...) vy(dz)dt,

where, similar to (7.3), we have expressed the nth derivative L("™ in terms of Bell’s polyno-
mials. Since (—1)"8(™ > 0 for all n > 1, Lemma 7.1, part (a) implies that (—1)"L( and

n

(—1)"6(™ are nonnegative functions. Therefore also (—1) /4;%? ) are all nonnegative functions.

Next, we apply (7.7) in Lemma 7.1, to obtain
E[VP] < o0 <= (-1)"s”(04,T) < 00 <= (=1)"0™(0+,T) < o0

where the last equivalence follows from observing, e.g., from (3.9)-(3.10), that both a(u,T)
and f(u,T) are finite and infinitely differentiable in an open neighborhood of w = 0. Finally,
since 5(0,t) = 0, expression (7.17) shows that

n o) T
(—1)”5(">(0+,T)—; /0 vy (dz) - /O (1" B (80(0.0).670.10).... ) dr.

and we can conclude that for n integer, statement (i) in Lemma 3.1 follows from (7.10).
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Consider now E[fo] for noninteger p. Based on similar arguments as above, Lemma 7.1
shows that

ug
E[VE] < 0 (—1)”/0 u"! %,)(u,T)du<oo
ug
(7.18) = (—1)”/ w16 (u, T du < oo.
0

Next, a simple inspection of the ODEs (3.7), (7.13), and (7.14) shows that for all (u,t) € R%,
the functions 3, 31, ..., 3™ satisfy the following bounds

J2
(7.19) —ue(t) < Bu,t) < —u <1 - Mu) e(t),
0_2
(7.20) (1 ) 0 < (DY) < ct0),
(7.21) 0<(=1)"8™ (u,t) <b  forallm>1,

where €(t) is the function given in (3.13), and b > 0 is a large enough constant.
In particular, the upper bounds in (7.21) imply that we can find a b > 0 large enough
such that 3
(=1)" Bk (B(l)(u,t), B (u,t),.. ) <b  forall (ut) € RZ
for all 1 < k < n. Furthermore, choosing ug < 2/\2T and setting by = UO#, from (7.19) it
follows that

Blu,t) < —ubpt for all (u,t) € [0,up] x [0,T].

Substituting these estimates into (7.17) we obtain that

uo B n
(1)n/ w16 (u, T)du < bZ/ / / Fyr=le= o0t gy dt vy(z)dx
0

656 / / /xbowo brir Lo e dt vy (o)
sfg Y (/ rdt)/ /mbOTuocr Ye CdC vy (z)da

pTL-T n
— a2 [ e ) v @)
0

and in view of (7.11), (7.18) we can conclude that E[J]] < oo implies E[VZE] < co. For the
converse implication, notice that (7.19) implies

u 2
Blu,t) > T for all (u,t) € R,
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and choose 1y < 2L and set ag = ug (17:) so (7.20) implies

(—1)5<1>(u,t) >apt  for all (u,t) € [0,ug] x [0,T].

Also recall that B, ,,(z1,22,...) = «]. Then, using the estimates above and expression (7.17),
we obtain

(1)”/0u =150 (y Tdu>/ / / ur ke 07 (<1)50(w,1)) " vy (de) dt du

00 uQ
> ag/ / / 2"t e AT du di vy (x)da
0 0 0

a(T)L T /oo /wUO/T)\ n—rr—1_—(¢
— d d
el A A SR 2T O

al Tn—l—l—r

- )\7(; —— /0 2"y (xug /TN r) vy(z)de,

and from (7.11), (7.18) we see that E[VE] < oo implies E[J/] < oo, which concludes the proof
of part (i).

Proof of Lemma 3.1, part (ii). We start by proving the statement for the OU subclass (3.4).
First, recall that for a positive and infinitely divisible distribution H with Lévy measure vy
it holds that

(7.22) Fg(z) € R_, ifandonlyif vy(z,00)€ R_,

and, in this case, Fg(x) ~ vy (z,00); see, e.g., Remark 25.14 in [32]. Next, from (3.14) we see

that
kv (u, T) = —ue(T)vo + / / )VJ(da:)dt

— —ue(T)vo + / (e —1) vy (da),

0

where vy is the measure defined by
T
(7.23) vy (z,00) = / vy(x/e(t), c0)dt for z > 0.
0

Thus, the distribution of Vr is infinitely divisible with Lévy measure vy. In view of (7.22),
we proceed to show that v;(x,00) € R_, implies vy (x,00) € R_,. In (7.23), use (2.2) and
apply the change of variable z := x/€(t) in (7.23), to show that for £ > 0, vy ({x, 00) takes the
form

vy (€x,00) = £ PaT /:C/G(T) K(fz)zz_l;\;ajdz.
Since ((£2)/4(z) — 1 as z — oo, for a given € > 0 we can find z, such that
Pl Pl Pl
(1 —5)m£(2) < mg(ﬁz) <( +5)m€(z)
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holds for all z > x/€e(T') > z.. So, integrating the chain of inequalities above, we see that
(1 =) vy (z,00) < vy (6a,00) < (1+e)¢ " vy (z,00)
for any = > x, = 2z,¢(T), and we can conclude that vy (x,00) /vy (x,00) = P as © — oo.

Consider now the full SVJ-v specification (3.2) and assume F; € R_, for a non integer p > 0.
In view of the tauberian equivalence (2.12), albeit reparametrized, we aim to show that

£y (1)

(7.24) o

&7 as u—0

for all £ > 0, where n € Z4, 0 < r < 1, and n = p + r. Notice that (2.9) implies that

I z*v;(dx) < oo for k =1,...,n — 1. Thus, using (7.3) and expressions (7.12), (7.17), we

0
can represent (—1)"[3%? ) as follows:

(7.25) (=)L (u, T) = Ly (u, T) Gv (u, T) + by (u, T),
where
T poo n

(7.26) Gy (u,T) = / / " (—B(l)(u,t)> Pty 1 (dx)dt,
o Jo

while ¢y is such that £y (0+,7") < co. Therefore, (7.24) is equivalent to
gV(&”) T) —r

2 = .
(7.27) G (0. T) — £ as u—0

To show the above, fix £ > 0, consider an arbitrary 0 < ¢ < 1, and choose u. < min(1, 5_1))\‘%2 £.

T
Then (7.19), (7.20) imply that, for all u < u., the following holds:

(1—-¢)Gou(u,T)
(1 —-¢)Gou(éu,T)

(u, T) < Gou (u(l—¢),T),

< Gv
S gV(fuvT) S gOU (fu(l - 8)7T) )

where

T 00
Goulu,T) = / / ety e Oy (d)dt.
0 0

Notice that Gouy corresponds to Gy defined in (7.25)—(7.26) when Vp is specified in the OU
model. Therefore, Goy satisfies (7.27) for any & > 0, implying that

o iy Gv(Ew,T) 1 —r
e < I ) STt

Since ¢ is arbitrary, we see that Gy satisfies (7.27), which concludes the proof of part (ii).
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