Mitigation of Azimuth Ambiguities in Spaceborne Stripmap SAR Images Using Selective Restoration

Jie Chen, Member, IEEE, Mahboob Iqbal, Wei Yang, Peng-bo Wang, and Bing Sun

Abstract—A novel framework is proposed for mitigating azimuth ambiguities in spaceborne stripmap synthetic aperture radar (SAR) images. The azimuth ambiguities in SAR images are localized by using a local mean SAR image, SAR system parameters, and a defined metric derived from azimuth antenna pattern. The defined metric helps isolate targets lying at locations of ambiguities. The mechanism for restoration of ambiguity regions is selected on the basis of size of ambiguity regions. A compressive imaging technique is employed to restore isolated ambiguity regions (smaller regions of interconnected pixels), whereas clustered regions (relatively bigger regions of interconnected pixels) are filled by using exemplar-based inpainting. The simulation results on a real TerraSAR-X data set demonstrated that the proposed scheme can effectively remove azimuth ambiguities and enhance SAR image quality.

Index Terms—Image processing, image restoration, synthetic aperture radar (SAR).

I. INTRODUCTION AND MOTIVATION

RECENT space missions have opened new horizons in the area of remote sensing [1]–[3]. The spaceborne synthetic aperture radar (SAR) systems have attracted special interest in remote sensing tasks such as surveillance, target and object detection, land classifications, disaster search and rescue, and homeland security [4], [5]. Recently, high-resolution SAR imagery has been employed for cyclone intensity estimation [6], ship classification [7], moving target detection [8], [9], oil field monitoring [10], 3-D building reconstruction [11], and feature detection [12]. The advanced and sophisticated applications also require high-quality SAR imagery free of artifacts. However, the spaceborne SAR imagery exhibits ambiguities which may lead to faulty interpretation of SAR imagery. The ambiguities are mainly divided into two categories, i.e., range ambiguities and azimuth ambiguities. Generally, range ambiguities are more likely shown as highly deformed images, resulting from mismatched Doppler rate. However, azimuth ambiguities are high-frequency spectral contributions, downconverted by sampling having similar Doppler rate with respect to the ground targets illuminated by the antenna main lobe. Therefore, azimuth ambiguities lead to more apparent artifacts in SAR images, particularly in coastal areas, and will be addressed in this paper.

Finite sampling of azimuth Doppler signals introduces azimuth ambiguities in spaceborne SAR images. Aliased signals are produced due to folding of Doppler frequencies toward the central part of antenna pattern in Doppler frequency domain. The ambiguous signals will be displaced symmetrically in azimuth toward the right and left of the actual target position. Azimuth ambiguities cause decreased signal-to-noise ratio (SNR) and lead to unreliable visual quality of the SAR image. In particular, an extremely high intensity target may result in apparently strong false targets in low-intensity homogeneous background areas (e.g., sea surface) at locations displaced by both azimuth and range shifts.

The foremost way to reduce azimuth ambiguities is by increasing the pulse repetition frequency (PRF) of spaceborne SAR systems. However, the higher the PRF is, the smaller the swath width would be [13]. Normally, the azimuth-ambiguity-to-signal ratio (AASR) should be lower than -18 dB [14] according to past and current spaceborne SAR missions [15], [16]. The nominal AASR parameter of SAR is determined by averaging out the AASR over a significantly vast area, assuming that all regions are distributed homogeneous scatters. However, in practice, the local value of AASR varies in different types of regions, for instance, local AASR would be much higher than nominal AASR in coastal areas.

The postprocessing techniques to address azimuth ambiguities can be divided into two categories, i.e., based on bandpass filtering and in-phase cancellation. Bandpass filtering technique [17], [18] removes azimuth ambiguities by using bandpass filters (BPFs) to filter azimuth signals. The bandpass filtering technique is effective in suppressing azimuth ambiguities but results in lower SNR, decreased effective Doppler bandwidth, and additional speckle noise. Guarnieri [18] introduced an adaptive approach for filtering process to help lessen induced speckle noise at locations where ambiguous signals are small by employing an adaptive Wiener filter. The performance of the Wiener filter is very sensitive to SNR. However, precise SNR estimation would impose a challenge in adaptive Weiner filtering technique.

The second type of azimuth ambiguity mitigation techniques is called in-phase cancellation techniques [19], [20]. These techniques design a reference function that provides matched filtering of the desired signal and deconvolves the ambiguities. Moreira’s design for signal-to-alias transfer function [19]
corresponds to the concept of an ideal filter with undefined phase and fading of ambiguities, whereas Zhang and Wang [20] used three filters: a typical matched filter and other two filters matching the responses of ambiguities. The outputs of the ambiguity-matching filters are subtracted from the output of the matched filter to obtain an ambiguity-free image. The in-phase cancellation techniques are effective for SAR images having strong point targets but subject to poor performance for distributed targets, because high-frequency components of reflectivity spectra are unrecoverable.

In this paper, we propose a novel framework to mitigate azimuth ambiguities in spaceborne stripmap SAR images. The locations of azimuth ambiguities are determined by calculating both azimuth and range shifts. An ambiguity map is built by employing a local mean SAR image. A metric based on azimuth antenna pattern (AAP) is defined to isolate strong targets lying at ambiguity locations. All pixels at ambiguity locations are replaced with zeros, and these pixels are restored by employing emerging compressive sensing (CS) [21], [22] or exemplar-based inpainting [23] depending on the size of the ambiguity region. The proposed framework was tested on a real TerraSAR-X single-look complex (SLC) SAR image data set, and experimental results exhibit its superior performance in removing azimuth ambiguities.

The rest of this paper is organized as follows. A brief overview of azimuth ambiguities is given in Section II. The proposed framework for mitigation of azimuth ambiguity is described in Section III, and simulation results on the TerraSAR-X data set are given in Section IV. Finally, we conclude this paper in Section V.

II. AZIMUTH AMBIGUITIES

Consider a SAR system flying with velocity v and transmitting pulses after every $1/f_p$ second, where f_p denotes the PRF, as shown in Fig. 1. Let (τ, t) and (r, a) be representations of the SAR image in time and data domains, respectively.

Under ideal conditions, the echo signal for a target is given by [24]

$$S_0(\tau, t; r, a) = \sigma(\tau, t; r, a)G_r^2(\tau; r) \otimes_{(\tau, t)} h(\tau, t; r, a)$$

(1)

where $\otimes_{(\tau, t)}$ represents 2-D convolution with respect to (τ, t). $G_r^2(r; a)$ is the range antenna pattern, $\sigma(\tau, t; r, a)$ is the backscatter coefficient for location (r, a), and

$$h(\tau, t; r, a) = G_a^2(t; a) \exp \left\{-\frac{2\pi}{\lambda r_0^2} \right\} \delta[r - r_1(x)]$$

(2)

where $G_a^2(t; a)$ is the AAP, r_0 is the minimum slant range, $r_1 = r_0 + 0.5a^2/r_0$, and $h_s(\tau, t; r, a)$ is the impulse response of SAR for $\sigma(\tau_0, t_0; r_0, a_0) = 1$ [19]. The AAP of spaceborne SAR as a function of azimuth Doppler frequency is shown in Fig. 2 (using TerraSAR-X as an example). The AAP is not finite in azimuth frequency domain. Fig. 2 shows the azimuth pattern in azimuth Doppler frequency domain at a reference time and one of its replicas shifted by PRF.

In Fig. 1, the desired target illuminated by the antenna main lobe is referred to as O, and two ambiguous targets which are illuminated by the antenna sidelobes are denoted as G_R and G_L. The contributions coming from targets G_R and G_L are displaced in azimuth by angles $\Delta \varphi_R$ and $\Delta \varphi_L$, respectively. The corresponding Doppler centroid error for ambiguous signals can be found as

$$\Delta f_{d, \varphi} = -\frac{2v}{\lambda} \Delta \varphi$$

(3)

where φ would be R or L corresponding to ambiguous targets G_R or G_L, respectively. The signals from the main target and ambiguous targets are added coherently according to AAP. The contribution from the ambiguous targets becomes indistinguishable when the corresponding $\Delta f_{d, \varphi}$ is equal to a multiple of PRF. At each azimuth position, an infinite number of such ambiguous signals are received simultaneously. Taking into
account these ambiguous signals, the received echo signal can be modified as [19]

$$S(\tau, t; r, a) = \sum_{i=-\infty}^{\infty} S_0(\tau, t; r, a) \exp\{j2\pi f_D \lambda \} \times \text{rect} \left[\frac{\tau + \Delta \tau_i}{\tau_p}, \frac{t + \Delta t_i}{T_s} \right]$$

(4)

where T_s is the synthetic aperture time, V_g is the ground velocity of the platform, $\Delta \tau_i = 2\Delta r_i/c$, and $\Delta t_i = 2\Delta a_i/V_g$ (Δr_i and Δa_i are the shifts in azimuth and range directions after image formation processing).

III. PROPOSED AMBIGUITY REMOVAL FRAMEWORK

The proposed ambiguity removal framework is shown in Fig. 3. The SLC data of SAR are processed to find out locations of pixels which are dominated with ambiguous contributions. We classify azimuth ambiguities into two categories, namely, clustered ambiguities and isolated ambiguities. If ambiguity regions appear in the form of connected pixels of size greater than 50 pixels, we name them as clustered ambiguities, with all other ambiguity regions termed as isolated ambiguities. The pixels in ambiguity regions in SLC data are assumed to be unknown, and selective restoration mechanism is used to find the values of these pixels. The pixels in isolated ambiguity regions are found out by employing a recently developed compressive imaging framework, whereas the pixels in clustered ambiguities are restored by using exemplar-based inpainting technique, as discussed in Section III-B.

Selective restoration strategy is adopted to achieve better restoration with computational efficiency. Compressive restoration is efficient but may result in poor restoration for clustered ambiguities. Therefore, exemplar-based inpainting, which is computationally inefficient, is employed to restore clustered ambiguities only.

A. Localization of Ambiguities

Each target in a spaceborne SAR image imparts its ghosts at azimuth frequencies that are integer multiples of PRF. A target O would impart I number of significant ambiguity image pairs on both the right and left sides. The ith ambiguous images on the right and left can be represented as G_{R_i} and G_{L_i}, respectively, shifted by Δa_i in azimuth direction and Δr_i in range direction, as shown in Fig. 1 (only the two most significant pairs of ambiguities are shown). The Δa_i and Δr_i are estimated by the following equations:

$$\Delta a_i = \frac{\Delta f_D}{f_r} V_g$$

(5)

$$\Delta r_i = \frac{\lambda}{2} \left(f_D + \frac{\Delta f_D}{2} \right) \frac{\Delta f_D}{f_r}$$

(6)

where f_D is the Doppler centroid in hertz, f_r is the Doppler rate in hertz per second, V_g is the ground velocity of the spaceborne vehicle, and Δf_D is the Doppler centroid frequency error for ambiguous signals. The Doppler centroid errors for ambiguous signals are given by

$$\Delta f_D = if_p, \quad i = \pm 1, \pm 2, \ldots, \pm \infty$$

(7)

where i is the number of ambiguity images from the target either on the right or left. Any pixel value on the SAR image corresponds to the sum of the scatter energy from the target and the ambiguity scatter energy from locations at multiples of f_p/f_r (the ambiguity energy for the first ambiguity is shown as the shaded area in Fig. 2). Due to exponential decay of AAP envelop, about 85\% of ambiguity energy is due to ambiguities at locations displaced in azimuth by $\pm f_p/f_r$ [20]. Therefore, the scatter at any arbitrary location (r, a) can be estimated by using the following equation:

$$S(\tau, t; r, a) \approx \sum_{i=-1}^{1} S_0(\tau, t; r, a) \exp\{j2\pi f_D \lambda \} \times \text{rect} \left[\frac{\tau + \Delta \tau_i}{\tau_p}, \frac{t + \Delta t_i}{T_s} \right]$$

$$= S_0(\tau, t; r, a) + S_{L_1}(\tau, t; r, a) + S_{R_1}(\tau, t; r, a)$$

(8)

where $S_0(\tau, t; r, a)$ is the scatter from the target by the antenna main lobe at an arbitrary location (r, a) and $S_{L_1}(\tau, t; r, a)$ and $S_{R_1}(\tau, t; r, a)$ are the most significant left and right ambiguous energies at $i = -1$ and $i = 1$, respectively.

3The value is selected on the basis of experiments on SAR data sets.
We assume that only one ambiguity either on the left (S_{L_i}) or on the right (S_{R_i}) is dominant at one pixel. For localization of ambiguity regions in a stripmap SAR image, a local mean SAR is employed along with approximated azimuth and range shifts of ambiguities given by (5) and (6), respectively. A local mean SAR image (denoted by S_p) is obtained by convolving an SCL SAR image with an $(m_a \times n_a)$ averaging kernel. The ambiguity map of the SLC SAR image is built by using

$$B(r,a) = \begin{cases} 1, & \text{if } |S_p(r,a)|^2 > \xi_i |S_p(r+\Delta r_i,a+\Delta a_i)|^2 \\ 0, & \text{if otherwise} \end{cases}$$

(9)

where Δa_i and Δr_i are given by (5) and (6), respectively, for $i = \pm 1$. The locations in ambiguity map B with zero values are treated as ambiguity regions. In (9), metric ξ_i is used to represent the contribution of the ith ambiguous signal at a certain location in the SAR image. The ξ_i is derived from AAP by using the following equation:

$$\xi_i = \frac{\int_{-f_p/2}^{f_p/2} |G(f)|^4 df \cdot df}{\int_{-f_p/2}^{f_p/2} |G(f)|^4 df \cdot df}$$

(10)

where f_d denotes the azimuth Doppler frequency. The numerator in (10) denotes the energy of two-way AAP from $-f_p/2$ to $f_p/2$, and the denominator is the ambiguous energy of the ith ambiguity, estimated by the energy of two-way AAP from $i f_p - f_p/2$ to $i f_p + f_p/2$. The ambiguity map given by (9) is sensitive to the value of ξ_i and the size of averaging mask, which is used to obtain S_p. Higher values of ξ_i may result in marking weak targets as ambiguities. On the other hand, lower values of ξ_i may leave significant ambiguities unmarked. The value of ξ_i defined by (10) provides a realistic compromise for the construction of ambiguity map.

The local mean SAR image helps take into account the SAR parameter estimation error and defocusing phenomenon of distributed images. Moreover, many structures in populated areas behave as distributed targets with several scattering centers. A distributed/complex target and its corresponding ambiguity images share similar structure but may differ in many details, as shown in Fig. 4. It can be observed that the ambiguity image is blurred in azimuth direction and has details that are also different compared to those of the actual target. The averaging filter makes ambiguity localization (9) insensitive to SAR parameter estimation and defocusing/blurring of ambiguous images. The suitable size of the averaging kernel is decided based on experimental results. In this paper, we take the average of 40 azimuth and 15 range samples to compute S_p (Fig. 5).

B. Mitigation of Ambiguities

The selective restoration strategy is employed to mitigate ambiguities localized through (8). The isolated ambiguities are restored by applying a compressive imaging framework, whereas clustered ambiguities are found out by exemplar-based inpainting technique.

1) Removal of Isolated Ambiguities: Let S be an $m \times n$ matrix representing the stripmap SAR image. If y_s is a vector containing M ambiguous pixels of isolated ambiguities in S, then, by using the compressive imaging framework, it can be written as

$$y_s = \Phi S$$

(11)

where Φ is an $M \times N$ sampling matrix with $N = m \times n$. Each row of sampling matrix contains only one “1” corresponding to pixel location in the SAR image (arranged in a column). This sampling matrix would be equivalent to a point sampling matrix [25]. If S_w is the sparse representation in wavelet domain, (11) can be given as

$$y_s = \Phi \Psi^T S_w = \Theta S_w$$

(12)

where Ψ is the wavelet transform matrix. $\Theta = \Phi \Psi^T$ is called the measurement matrix. The problem is to find S_w from y_s if the measurement matrix is known. Once S_w is known, S can be found by taking the inverse Ψ transform. The problem is highly underdetermined as the number of known elements is M and the number of unknowns is N with $M \ll N$. The
Given a patch determine the order of filling pixels at the border of the target δ pixels at the from outside to inward in concentric layers. The priorities of all regions, shown as Ω = χ

The isolated ambiguities have been removed in the measurement process [25], so

\[Θ = \Phi^{-1} \Psi^T \]

where \(\Phi^{-1} \) is the sharpening filter. \(S_w \) can be reconstructed from measurement vector \(y_s \) by solving the following \(l_1 \) optimization problem [21]:

\[S_w = \arg \min \|S_w\|_1, \quad \text{subject to } y_s = \Theta S_w, \]

\(\hat{S}_w \) is composed of wavelet coefficients of recovered SLC image \(S \). The solution to (14) requires a backward measurement matrix \(\Theta^* \), to remove the effect of \(\Theta \) (i.e., \(\Theta^* \Theta v \approx \|v\| \)) during the minimization process. The backward measurement matrix is defined as \(\Theta^* = \Psi \Gamma^{-1} \Phi^T \) [25] (where \(\Gamma \) is the blurring filter). Once \(\hat{S}_w \) is found by solving (14), \(\hat{S} \) is found by taking the inverse wavelet transform and then applying the sharpening filter. The isolated ambiguities have been removed in \(\hat{S} \), but it still contains clustered ambiguities which are restored using exemplar-based inpainting technique.

2) Removal of Clustered Ambiguities: Let there be \(N_c \) ambiguous regions in SAR data. These regions are removed sequentially starting from the top-left corner of \(\hat{S} \) by applying exemplar-based inpainting technique. Exemplar-based inpainting [23] employs a template window for filling the lost patches of images. The fill order is the core of exemplar-based inpainting technique. Exemplar-based inpainting [23] employs a template window for filling the lost patches of images. The fill order is the core of exemplar-based inpainting technique.

The patch on front \(\hat{S} \) is the target region which is the interface between the target and source regions, as shown in Fig. 6(a). The front of the target region is filled from outside to inward in concentric layers. The priorities of all pixels at the \(\delta \Omega \) are calculated, and these priorities are used to determine the order of filling pixels at the border of the target region. Given a patch \(P_\alpha \) at point \(\alpha \) for \(\alpha \in \delta \Omega \), its priority is given as [23]

\[R(\alpha) = C(\alpha)D(\alpha) \]

where \(C(\alpha) \) and \(D(\alpha) \) are the confidence term and data term, respectively, defined as [23]

\[C(\alpha) = \sum_{\beta \in P_\alpha} C(\beta) \frac{\|P_\alpha\|}{|P_\alpha|} \]

\[D(\alpha) = \frac{|I_{\alpha} \cdot n_\alpha|}{\kappa} \]

where \(|P_\alpha| \) is the area of \(P_\alpha \), \(\kappa \) is a normalization factor (e.g., \(2^8 - 1 \) for an 8-b image), \(n_\alpha \) is a unit vector orthogonal to the front \(\delta \Omega \) in the point \(\alpha \), and \(I_{\alpha} \) is the isophote (direction and intensity) at point \(\alpha \). The distinct patches are selected for each pixel on the boundary of the target region, and priority is computed for these patches. The initial values of \(C(\alpha) \) are set to \(C(\alpha) = 0 \forall \alpha \in \Omega \) and \(C(\alpha) = 1 \forall \alpha \in \chi - \Omega \). The confidence term \(C(\alpha) \) leads to filling of those patches first that have more of their pixels already filled. The data term \(D(\alpha) \) determines the strength of isophotes hitting the front \(\delta \Omega \) and hence ensures that linear structure will be synthesized first [23].

The patch on front \(\delta \Omega \) with the highest priority is filled first. For patch \(P_\alpha \), a patch is searched in the source region which is the most similar to \(P_\alpha \). The similarity between the patches is measured by the sum of square distances of already filled pixels in the two patches [23].

In order to increase computational efficiency of filling clustered ambiguities, the SAR image can be divided into segments based on texturizedness. The SAR image is quite uniform in the areas of forest and sea, whereas populated areas appear as textures. A typical segmentation of a SAR image is shown in Fig. 7, where significant segments in a SAR image are numbered. Let \(N_r \) be the number of segments in a SAR image.
based on texturedness, and let $\Omega^k_c \ (k \in 1, 2, \ldots, n_c)$ be the number of clustered ambiguities. If the kth ambiguity Ω^k_c lies in the lth segment η_l of the SAR image, the corresponding source region Λ^k_c can be given as

$$\Lambda^k_c = \eta_l - \Omega^k_c - \sum_{k'} \Omega^k_{c'}$$ \hspace{1cm} (17)

where $\Omega^k_{c'}$ represents cluster ambiguities other than the ambiguity under consideration lying in segment η_l. In order to avoid the possibility of introduction of false targets in the filled region, strong point targets in uniform segments such as η_1 in Fig. 7 should not be included in the source region when applying exemplar-based inpainting. Therefore, (17) can be modified for uniform regions

$$\Lambda^k_c = \eta_l - \Omega^k_c - \sum_{i=1}^{k'} \Omega^i_{c'} - \sum_{j \in p} P^l$$ \hspace{1cm} (18)

where P^l represents strong point targets in uniform region segment η_l. For each patch to be filled at the region front, a patch is found out in the source region that is the most similar to the patch at the region front. Having found the best patch in the source region with minimum distance to the patch to be filled on boundary, the value of each pixel to be filled is copied from its corresponding position inside the patch to be filled [23].

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

A. Experimental Results

The proposed azimuth ambiguity mitigation framework was tested on a TerraSAR-X data set. The parameters of TerraSAR-X used for localization of ambiguities are given in Table I. The TerraSAR-X image of Dubai coastal area (Jebel Ali port) with strong azimuth ambiguities is shown in Fig. 8(a). The ambiguities of a concrete/metallic rectangular structure can be seen on both the left and right sides in azimuth directions. The left ambiguity appears on uniform background, i.e., sea, whereas the right ambiguity appears on populated areas. This is an example of distributed targets producing ambiguities. The ambiguity map of the SAR image (9) is shown in Fig. 8(b). It can be seen that the ambiguity detection process is pragmatic and even small targets have not been marked as ambiguities. The results of ambiguity reduction by using a BPF are shown in Fig. 8(c). The increase in speckle noise due to BPF is obvious in Fig. 8(c), which would lead to lower SNR. Fig. 8(d) presents the ambiguity mitigation in the TerraSAR image obtained by employing the proposed framework, which shows significant enhancement in the SAR image.

The proposed framework was also used to mitigate ambiguities on the image of Palm Jumeirah resort in Dubai coastal area acquired by TerraSAR-X, as shown in Fig. 9(a). The restored image using BPF is shown in Fig. 9(b), whereas the image produced by using the proposed ambiguity removal framework is shown in Fig. 9(c). The zoomed patches of smooth areas are
also shown in Figs. 8 and 9. Three important features of the proposed ambiguity mitigation framework can be observed in Figs. 8 and 9.

1) The filtering technique decreases SNR, whereas the proposed technique does not deteriorate signal quality.
2) The strong and distributed ambiguities are not removed completely using the BPF technique, as can be observed in Fig. 8, but the proposed framework can remove these ambiguities satisfactorily.
3) The bandpass filtering technique results in blurring of the SAR image, whereas the proposed framework would not lose spatial resolution of the SAR image.

B. Discussion

The metric defined by (10) helps targets not to be marked as ambiguities. However, if a scatter from a target is very weak and the ambiguous signal is quite strong, then (9) may mark this location as possible ambiguity, as scatter from weak targets may be less than the variation of parameter from actual AAP at the location. Thus, if a very weak target is fully corrupted by strong ambiguous signals, the whole target may be marked as an ambiguity region, and we may lose the target. However, if a very weak target is partially marked as ambiguity due to strong ambiguities, still, it can be reconstructed by using the framework.

Our proposed technique restores only ambiguous pixels within the SAR image. There is no change at all for all other locations. The filtering-based ambiguity reduction techniques lower the SNR in a SAR image. However, in the proposed framework, SNR would be unchanged at the unambiguous locations.

The increased interest of research community in linear inverse problems would lead to highly efficient restoration algorithms in near future. We are confident that, exploiting latest research in these areas, the proposed framework would be a pragmatic and computationally efficient option for mitigation of azimuth ambiguities in spaceborne stripmap images.

V. Conclusion

A novel framework based on selective restoration has been proposed for removal of azimuth ambiguities in spaceborne stripmap SAR images. The azimuth ambiguities in stripmap images are identified through a simple and effective technique by employing a metric derived from AAP. The ambiguous locations are predicted by selecting either compressive imaging or exemplar-based inpainting technique based on size of the ambiguous region. The experimental results on real SAR data have demonstrated that the proposed ambiguity mitigation framework is better compared to filtering-based reduction techniques.

The proposed framework will be extended for ambiguity mitigation in spaceborne high-resolution spotlight/sliding-spotlight SAR images in the future. The azimuth ambiguity in spotlight/sliding-spotlight SAR exhibits different behavior compared to spaceborne stripmode SARs. Therefore, AASR in spotlight/sliding-spotlight SAR images varies as a function of azimuth position, and new formulation for localization of ambiguities would be required to deduce accordingly.