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Abstract 

Most of the literature of single-vendor single-buyer integrated production-inventory models for 

deteriorating items assumed a fixed production rate.  Little attention has been paid to finding the optimal 

production rate for minimizing the total system cost.  This paper investigates how production rate affects 

the total system cost, and develops a solution procedure for finding the optimal production rate for the 

traditional models.  Based on the findings, this paper proposes an integrated single-vendor single-buyer 

model of an exponentially deteriorating item, in which non-stop production is considered and production 

rate is included as one of the decision variables.  It has been shown, with numerical examples, that the 

proposed model can provide a lower cost solution than the traditional models which assume a fixed 

production rate.  The proposed model also considers deterioration during deliveries, which is usually 

neglected in the literature of inventory models of deteriorating items.  Furthermore, the proposed model 

is extended to relax the constant cost parameter assumption, which is prevalent even in non-constant 

production rate models, and optimize the cost for a system in which some of the cost parameters are 

production rate dependent.             

 

Keywords:  Supply Chain Management, Production-inventory Model, Coordination, Deteriorating items 

 

1.  Introduction 

In the literature of inventory models of deteriorating items, production rate was usually fixed arbitrarily 

and much larger than the demand rate of the product.  This paper investigates the effect of changing 

production rate on the system cost of a single-vendor single-buyer supply chain.  It is found that in many 

cases, a lower production rate can result in a lower system cost.  Hence, we propose a continuous 

production model in which the production rate is demand-driven.  The results of our numerical 

experiments show that the model can achieve a lower system cost when compared with that of the 

traditional model which assumes an arbitrarily fixed production rate.  The proposed model also considers 

deterioration during transportation which is usually ignored due to the general assumption of 

instantaneous shipments in most inventory models of deteriorating items.  The model reduces the average 
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inventory level and hence reduces the deterioration quantity.  As deterioration results in wastage of 

resources that have adverse effects to environmental protection, this model also helps to address the issue 

of environmental concerns.  Whereas cost parameters are usually assumed to be constant even in 

non-constant production rate models, the proposed model is extended to consider a scenario in which cost 

parameters increase when production rate decreases.   

              

The remainder of this paper is organized as follows: Section 2 is a literature review of inventory models of 

deteriorating items from Economic Order Quantity models, Economic Production Quantity models, to 

integrated vendor-buyer models.  Section 3 introduces the integrated vendor-buyer model.  Section 4 

considers the effect of changing production rate on the total system cost of the vendor-buyer model.  

From the findings, a solution procedure for finding the optimal production rate among a range of 

production rates, for minimizing the system cost is developed.  In Section 5, an optimal production rate 

model, allowing deterioration during non-instantaneous transportation, is proposed for an integrated 

single-vendor single-buyer system.  The solution procedure and an example of the proposed model are 

shown. A model in which deterioration and inventory holding costs increase when production rate 

decreases is then presented.  Section 6 presents a procedure for choosing between the arbitrarily fixed 

production rate model and the proposed model for cost minimization.  Section 7 is the conclusion of the 

study presented in this paper.                         

       

2.  Literature Review 

Ghare and Schrader (1963) used the term inventory decay for depletion of inventory by ‘other-than 

demand methods’, and developed an Economic Order Quantity (EOQ) model for an exponentially 

decaying item with a constant demand rate.  Exponential deterioration is also referred as a constant rate 

(of the level of inventory) of deterioration in many models of deteriorating items.  Covert and Philip 

(1973) developed an EOQ model for deteriorating items whose time to deterioration follows a 

two-parameter Weibull distribution.  Later, Philip (1974) extended the model to deteriorating items 

following 3-parameter distribution.  Misra (1975) developed the first Economic Production Quantity 

model and obtained an approximate relation between the length of the production time and that of the 

non-production time in a cycle for constant rate of deterioration.        

 

After these pioneering works, researchers have presented EOQ and EPQ models of more complex 

scenarios.  Shah (1977) developed an order-level lot-size model allowing shortages.  Tadikamalla (1978) 

developed an EOQ model assuming the Gamma distribution for deterioration.  Mak (1982) extended 

Misra’s EPQ model to one with backlogging for shortages.  Park (1983) and Raafat (1985) presented 

EPQ models that include exponentially deteriorating raw materials and a non-deteriorating product.    

Goyal and Gunasekaran (1995) developed an EPQ model for maximizing the profit of a multi-stage 

production system.  Balkhi and Benkherouf (1996) presented a production lot size inventory model for 
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exponentially deteriorating items, in which the production rate and the demand rate are functions of time; 

whereas in Balkhi (1999)’s model, deterioration rates are also functions of time.  In these non-constant 

production rate models, the cost parameters are assumed to be constant.  Wee (1993), Chang and Dye 

(1999), Goyal and Giri (2003), Wu et al. (2006), Rajeswari and Vanjikkodi (2012), Chowdhury et al. 

(2014), Kumar and Rajput (2015) have proposed EOQ or EPQ models with partial backordering.  

Widyadana and Wee (2012) suggested an EPQ model for exponentially deteriorating items with multiple 

production setups followed by one rework setup in each cycle. 

 

Jaggi et al. (2015a) and Jaggi et al. (2016a) presented fussy optimal ordering profit maximization models, 

for deteriorating items and non-deteriorating items, respectively, under conditions of permissible delay in 

payments. Jaggi et al. (2015b) proposed an EOQ model maximizing the retailer’s profit for a 

two-warehouse system for a deteriorating item with imperfect quality.  Jaggi et al. (2016b, 2016c) 

developed optimal ordering policies for non-instantaneous deteriorating items under credit financing and 

inflationary conditions, respectively, for systems with two storage facilities.  Tiwari et al. (2016) 

considered both trade credit and inflation in their retailer’s optimal replenishment policies for a 

two-warehouse system.                              

  

Researchers nowadays have put more emphasis on the optimization of the whole supply chain of 

supplier(s) and buyer(s).  Yang and Wee (2000) developed an integrated vendor-buyer model for 

minimizing the total cost of a single-vendor single-buyer system for exponentially deteriorating items.  In 

this model, the vendor starts production and makes the first shipment at the same instant.  The authors 

applied Misra’s approximate expression, for the relation between the length of the production period and 

the length of the non-production period for EPQ model, in their model in which shipments are delivered in 

lots.  Jong and Wee (2008) presented a model in which production starts before the first shipment.  Wee 

et al. (2008) provided an improved solution of the model.  In addition to starting production at an 

appropriate instant before the first shipment, they also derived the formula for finding the length of the 

production period allowing multiple deliveries for the integrated single-vendor single-buyer lot-delivery 

model.  In their solution procedure for finding the optimal solution, approximations to the exponential 

and the logarithm terms in the cost equation were made.             

 

Some researchers assumed small deterioration rates and used an algebraic method in their 

production-inventory models for items with constant deterioration rates.  Yan et al. (2011) proposed an 

algebraic method in deriving the inventory level and cost functions for their model, and presented a 

solution procedure for their model.  Sarkar (2013) and Chang (2014) considered the same model with 

different solution procedures.  These models assumed that the unit deterioration cost is the same for both 

the vendor and the buyer.  However, it is more likely that the vendor and the buyer have different 

deterioration costs due to difference between the production cost and the purchase price, different scales of 
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operations and some other factors. 

                

Kim et al. (2014) developed a lot-for-lot delivery model for a supply chain using returnable transport items 

(RTIs) for shipments.  In this model, empty RTIs were returned to the supplier with a stochastic return 

time approximated by an exponential distribution, and deterioration only occurred during stockouts of 

RTIs at the supplier due to late return.  Deterioration during production and at the buyer’s end was 

neglected.   

                 

3.  Introduction to the Model 

The assumptions for our single-vendor single-buyer coordinated model are: 

(i) The item is deteriorating exponentially, that is, the rate of deterioration is a constant rate of the 

instantaneous inventory level of the item. 

(ii) The demand rate and the cost parameters are constant.  (The constant cost parameter assumption 

has been a general assumption in the literature of production-inventory models that do not consider 

quantity discounts, inflation, and time value of money.) 

(iii) The production rate is constant, either fixed arbitrarily or determined by the procedure in the 

proposed model.   

(iv) Shortages are not allowed. 

(v) Shipments are made instantaneously (except in Section 5.4). 

 

Notations for the parameters: 

k: deterioration rate (fraction of the inventory level) of the item 

D: demand rate of the buyer 

bA : ordering and other fixed cost per delivery of the buyer  

bC : unit deterioration cost of the buyer 

bH : inventory holding cost per unit per unit time of the buyer 

P: production rate of the vendor 

S: production set up cost of the vendor 

vA : vendor’s order processing cost and shipment cost per delivery to the buyer 

vC : unit deterioration cost of the vendor 

vH : inventory holding cost per unit per unit time of the vendor 

 

Other notations: 

0Q : delivery quantity   

T: production cycle time of the arbitrarily fixed production rate model  
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pT : production time in a production cycle of the arbitrarily fixed production rate model 

cT : delivery (ordering) cycle time of the buyer 

n: number of deliveries in a production cycle of the buyer of the arbitrarily fixed production rate model 

bTC : total cost of the buyer per unit time 

vTC :  total cost of the vendor per unit time 

sTC : total system cost per unit time 

     

The inventory level of the buyer is shown in Fig. 1. 

<< Insert Fig. 1 about here >> 

 

The inventory level of the buyer is described by the following differential equation: 

  b
b

dI
kI D

dt
   .                 (1) 

Solving (1) and with the boundary condition 0bI   at ct T , the inventory level of the buyer is given 

by 

  
( )

1( )ck T t

b

D
I e

k


  .                 (2) 

The order quantity is the inventory level at 0t  .  Hence,  

  0 ( 1)ckTD
Q e

k
  .                 (3)  

 

Suppose the vendor has produced for a period of  pT  without any shipment.  The inventory level of the 

vendor, vI , is described by the following equation: 

  v
v

dI
kI P

dt
   .                    (4) 

Solving (4) and with the initial condition 0vI   at 0t  , the inventory level of the vendor is given by 

  
kt

v

P P
I e

k k

  .                    (5) 

At pt T , v vI Q .  Hence, 

  (1 )pkT

v

P
Q e

k


  .                    (6) 

 

The inventory level of the vendor is shown in Fig. 2. 

<< Insert Fig. 2 about here >> 
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If p cT T  and 0vQ Q , equating (3) and (6) gives the corresponding production rate as  

  
( 1)

(1 )

c

c

c

kT
kT

kT

D e
P De

e



 


.                   (7) 

  

At this production rate, the production time is as long as the delivery (ordering) cycle, and the quantity 

produced by the vendor is just sufficient to meet the buyer’s requirement without shortages.  In general, a 

production cycle includes a production period and a non-production period. The (arbitrarily fixed) 

production rate is set at a sufficiently large value satisfying the inequalities 
/ckT kT nP De De   and 

p cT nT T  .  The decision variables are the number of deliveries in a production cycle and the 

production cycle time optimizing the total system cost per unit time.  The effect of increasing/decreasing 

production rate on the total cost for the general case is analyzed in the following section. 

 

   

4. How Production Rate Affects the Total System Cost 

In the literature, there was little attention paid to the impacts of production rate on the total system cost.  

In this section, we will investigate how production rate affects the total system cost for a given production 

cycle time with production and non-production stages (i.e., p cT nT T  )  and a number of deliveries.   

 

Wee et al. (2008) derived the following formula for the total relevant system cost per unit time for a 

single-vendor single-buyer system: 

/
( )( )( ) ( ) 1

( 1)
v v pkT nv b b v b v

s

H kC PT DTn A A H H kC kC nDS T
TC e

T T kT k n kT

      
      

 
  (8) 

where the first term is the setup cost per unit time, the second term is the delivery related costs per unit 

time, the remaining two terms together are for inventory holding costs and deterioration costs per unit time, 

P is the arbitrarily fixed production rate, n is the number of deliveries in a production cycle of cycle time 

T , and pT  is the production time within a cycle given by 

  
/

( 1)
1

ln 1

1 ( 1)

kT

p
kT n

D
e

PT
Dk

e
P

 
 

  
  
 

.              (9) 

Wee et al. (2008) expanded the logarithmic term and obtained an approximate cost function in order to 

find the optimal solution for the problem.  However, the condition for convergence of the expansion was 

not discussed.  It can be shown (in Appendix A) that a sufficient condition for the convergence of the 
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expansion of the logarithm function for the production time is given by  ln 2 0.6931kT    for any 

number of deliveries within a production cycle.  In the literature of inventory models, production cycle 

time is usually not more than one year; and deterioration rates for exponentially deteriorating items in the 

numerical examples of most of these models are not more than 0.2 per year.  Hence, the condition of 

ln 2kT  , where T is in years, is usually satisfied.  In this paper, expansion for logarithmic terms is not 

needed as exact mathematical expressions are used.  The assumption of ln 2kT   is therefore not 

required.  Instead, a less “stringent” requirement of 0.863kT   is assumed and will be explained. 

  

Differentiate sTC  in (8) with respect to P, we obtain 

  
( )

( )v v
s p

H kC
TC PT

P kT P

 


 
,             (10) 

and 

 
/ / /

( 1) ( 1)
1

( ) ln 1

1 ( 1) 1 ( ) 1 ( 1)

kT kT

p
kT n kT kT n kT n

D D

P P
D D D

P P P

e e

PT
P k

e e e e

  
   

   
                  

 .        (11) 

 

Hence, sTC
P




 has the same sign as ( )pPT

P




 as k , vH , vC , and T  are all positive. 

Further differentiating (11) with respect to P, 

 
2

2

2

/ /

/ / /

2 2
( )

1 ( ) 1 ( 1)

2 1 2 1)( )]
( 1)

[ (
p

kT kT n kT n

kT kT n kT n kT kT n

kT

D D

D P P

P D D

P P

PT
P

e e e

e e e e e
e

 
 

  
             

    

     
 .    (12) 

 

 

4.1  The Effect of One Delivery in a Production Cycle 

Since 

( 1) ( 1)
1

( ) ln 1 0

1 ( 1) 1 ( 1)

kT kT

p
kT kT

D D
e e

P PPT
D DP k

e e
P P

  
   

    
      

   

  ( ln(1 )u u  ), this implies that 
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0sTC
P





.  Hence, the total system cost per unit time is a decreasing function of production rate for a 

given value of T. 

  

4.2  The Effect of Two Deliveries in a Production Cycle 

With given values for T and n, 
/kT nP De .  At the limiting value of 

/kT nP De , 

  

1
1

1
1

1 1
( )

kT
kTn

p
kT

n

kTe e
PT

P k
e

 
 

 

 
 

 

 
   

    
 

.            (13) 

It can be shown that (in Appendix B):  

(i) for 2n  , at 2

kT

P De , ( ) 0pPT
P





; 

(ii) for 2n  , ( )pPT
P




 is maximized when 22

kT

P De ; 

(iii) for 3n  , at 

kT

nP De , ( ) 0pPT
P





  for 0 4.6223kT  ; 

(iv) for 3n  , 

2

2
( ) 0pPT

P





 , i.e., ( )pPT

P




 is a decreasing function of P , for 0.863kT  ; 

(v) for all 1n  , lim ( ) 0p
P

PT
P





. 

 

Hence, from (i), (ii) and (v) above, for 2n   and a given value of T, ( )pPT
P




 behaves as follows:  

(a) ( )pPT
P




 is negative but increasing (i.e., getting less negative) in the interval 

/2 *( , )kTDe P  where 

*P is the production rate at which ( ) 0pPT
P





.  

(b)  ( )pPT
P




 is positive and increasing in the interval 

* /2( ,2 )kTP De . 

(c)  ( )pPT
P




 remains positive but is decreasing for production rates larger than 

/22 kTDe , and 

approaches 0 for very large production rates. 

 

This means that for 2n   and a given value of T, the total system cost per unit time is not a monotonic 

function of production rate.  There is a particular production rate at which the total system cost per unit 
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time is the minimum.  This particular production rate, 
*P , can be found by solving the equation 

( ) 0pPT
P





.   

 

With the assumption of 1T  , an upper bound for 
*P  can be found by substituting 2n  , /D P   

and 1T   in (11); and we have 

 
  /2 /2 /2

1 ( 1) ( 1)
( ) ln 1

1 ( 1) 1 ( ) 1 ( 1)

k k

p k k k k

e e
PT

P k e e e e

 

  

    
   

         

 .     (14) 

 

Assuming 
*   is the solution of (14), then for 1T  , ( ) 0pPT

P





 is reached at a production rate 

smaller than 
*/D  .  Hence, for any 1T  , the total system cost per unit time is an increasing function 

of production rate if 
*/P D  .  

         

4.3  The Effect of Three or More Deliveries in a Production Cycle 

Numerical experiments show that for 3n  , ( )pPT
P




 is positive for any production rate larger than 

the minimum production rate 
/kT nDe  for a given T.  This observation can be generalized and its validity 

can be established with the assumptions mentioned in Section 3 as follows:   

 

From the results of (iii), (iv) and (v), for 3n  , ( )pPT
P




 is positive at the smallest feasible production 

rate; it decreases when the production rate increases and remains positive and approaches 0 when the 

production rate is very large.  Therefore, when 3n  , 0.863k   and 1T  , (i.e., 0.863kT  ), 

( )pPT
P




 is positive and thus sTC

P




 is positive (see Equation 10), for any production rate larger than 

the minimum production rate.  Hence, the total system cost per unit time is an increasing function of 

production rate for a given value of T. 

 

4.4  Summary 

For a given value of the production cycle time T and a given number of deliveries n, the effect of changing 

production rate on the total system cost per unit time is summarized as follows: 

(#1) For 1n  , increasing production rate reduces the cost. 

(#2) For 2n  , there exists a production rate that minimizes the cost.   

(#3) For 3n  , increasing production rate increases the cost. 
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Based on these findings, the following proposition is developed to determine the optimal production rate 

for the concerned supply chain. 

    

Proposition I  (Highest/Lowest Production Rate for Cost Minimization)  

If a single-vendor single-buyer system supplying an exponentially deteriorating item with a demand rate 

of D satisfies the following conditions: 

(a) the rate of deterioration is not more than 0.863, i.e., 0.863k  ; 

(b) the production cycle time is within one year, i.e., 1T  ; and 

(c) the cost parameters are constant for production rates in the interval [ , ]a bP P  where 
*/aP D  , 

*  being the solution of equation (14); 

then among all production rates in the interval [ , ]a bP P , the production rate giving the optimal total 

system cost per unit time is either aP  or bP .  

 

Proof: 

For any production rate sP  in the interval [ , ]a bP P ,  

(i) Suppose the cost is optimal with 1n   and 
*

sT T .  Since s bP P , we have 

* * *( ,1, ) ( ,1, ) ( )s s s s b s s bTC P T TC P T TC P  , where 
*( )s bTC P  is the overall optimal cost at the 

production rate of bP  for all possible values of n. 

 

The inequality 
* *( ,1, ) ( ,1, )s s s s b sTC P T TC P T  is based on (#1). 

 

(ii) Suppose the cost is optimal with 2n   and 
*

sT T .  Since 
*/s aP P D   , we have 

* * *( ,2, ) ( ,2, ) ( )s s s s a s s aTC P T TC P T TC P  , where ( )s aTC P   *
 is the overall optimal cost at the 

production rate of aP  for all possible values of n.   

 

The inequality 
* *( ,2, ) ( ,2, )s s s s a sTC P T TC P T  is based on the discussion after equation (14) in 

Section 4.2.  

 

(iii) Suppose the cost is optimal with 3n   and 
*

sT T .  Since s aP P , we have 

* * *( , , ) ( , , ) ( )s s s s a s s aTC P n T TC P n T TC P  , where 
*( )s aTC P  is the overall optimal cost at the 

production rate of aP  for all possible values of n. 
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The inequality 
* *( , , ) ( , , )s s s s a sTC P n T TC P n T  is based on (#3). 

 

Hence, if the cost parameters are constant for production rates in the interval [ , ]a bP P  for a given system 

satisfying the above conditions, the optimal production rate that minimizes the total system cost per unit 

time is either the lowest production aP  or the highest production rate bP .  It only requires finding the 

optimal costs for these two production rates.  The production rate, aP  or bP , that gives the smaller cost 

is the optimal production rate for the system.  In the literature of production-inventory models, 

production rates are arbitrarily fixed and usually much higher than the demand rates.  Hence, the 

minimum production rate requirement for aP  in condition (c) is usually satisfied, in addition to 

conditions (a) and (b).  When a range of production rates is considered for a certain supply chain 

satisfying these three conditions, Proposition I indicates that the optimal production rate is either the 

smallest or the largest production rate of the concerned range.  The overall optimal production rate is 

hence the one (largest or smallest) with smaller total system cost.                

       

4.5  A Supplementary Heuristic  

It has been assumed that 
*/aP D   in Proposition I.  In case this is not valid, that is, 

* */ aP D P  , then (ii) in the proof of Proposition I does not hold true.  Therefore, to determine the 

optimal production rate, theoretically the optimal costs for all production rates between aP  and  
*P  

have to be found for 2n  , and compared with the optimal costs for production rates aP  and bP  .  

This is intractable.  A suggested heuristic is to consider “several” production rates within the concerned 

range.  For example, with 1000D  units per year and 0.1k   per year, solving (14) gives 

* 1402P   units per year.  Suppose 1200aP   units per year and 3200bP  units per year, the 

procedure for the proposed heuristic is as follows:   

(a) Find ( 1200)s aTC P    *
 and 

*( 3200)s bTC P  , the overall optimal costs for the lowest and largest 

production rates being considered.   

(b) Determine the “steps”, I, of production rates.  The “steps” depend on the magnitudes of production 

rates being considered and the precision needed. 

(i) Find 

*

aP P
m

I

 
  
 

  

(ii) For 1j   to m,  set ( ) aP j P jI   and find the optimal cost for the production rate of 

( )P j   for 2n  . 
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(iii) Find the smallest cost among the costs obtained in (ii) and the corresponding production rate.  

Suppose this production rate is ( )P .  If the cost associated with ( )P  is not lower than the 

smaller cost obtained in (a), go to (d).  Otherwise, go to (iv). 

(iv) The difference between the costs for ( 1)P   and ( )P , and that between the costs for 

( 1)P   and ( )P , serve as a measure of the precision. 

(v) If the precision is acceptable, go to (c).  Otherwise, set a smaller value for I, and repeat (i), (ii) 

(iii) and (iv), until the precision is acceptable, and go to (c). 

(c) Compare the smallest cost obtained in (b) and the two costs obtained in (a).  The production rate 

that gives the minimum of these three costs is taken as overall optimal production rate for the 

system.  Stop. 

(d) The production rate that gives the smaller cost in (a) is taken as the optimal production rate for the 

system.  Stop. 

 

5.  A Vendor-buyer Continuous Production Model with Demand-driven Production Rate    

5.1  The Model 

The model discussed in Section 4 is a conventional production-inventory model having a non-production 

phase in a production cycle.  However, there are situations that non-stop production for some periods of 

time is desired so as to meet an order urgently.  The urgent order may be due to, for example, a tight 

shipment schedule, an urgent demand or special events, etc.  Hence in this section, a model without 

non-production phase is proposed for this purpose.  Furthermore, in the literature of inventory models for 

deteriorating items, deliveries are assumed to be instantaneous and therefore there is no deterioration 

during deliveries.  The proposed model also considers deterioration during delivery for situations that 

this cannot be neglected. 

 

The inventory levels of the vendor, the buyer and during transportation, respectively, of the proposed 

model are depicted in Fig. 3. 

 

<< Insert Fig. 3 about here >> 

 

It has been shown in Section 3 that by running at a production rate of ckT
De  and a delivery cycle of cT , 

the supply chain is adopting a lot-delivery continuous production model with p cT T . Suppose the 

delivery lead-time is TT  and the delivery occurs between Tt T   and 0t  .  The equation for the 

inventory change of the goods during delivery is given by 
dI

kI
dt

  .  The solution is 0

ktI Q e , and 

the delivery quantity required is 0   at  TkT

T TQ Q e t T   . 
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The vendor has to deliver a quantity of 0
TkT

Q e  units and the buyer will receive Q0  “good” units upon 

receiving the delivery.  The production rate, 2P , required to result in an inventory level of 0
TkT

Q e  units 

in a period of cT can be found from the equation 2 (1 ) ( 1)c c TkT kT kTP D
e e e

k k


    which gives 

  
( )

2
c Tk T T

P De


                            (15) 

 

The total cost function of the model is derived as follows: 

 

From equation (2), the average inventory level of the buyer is given by  

    ( )

0

1 1
1 ( 1)

c
c c

T
k T t kT

c

c c

D D
e dt e T

T k kT k

  
    

 
 .          (16) 

The inventory holding cost per unit time is given by 

  
1

( 1)ckTb
c

c

H D
e T

kT k

 
  

 
.               (17) 

Quantity of deteriorated items per cycle is 

  0

1
( )

ckT

c c

e
Q DT D T

k


   .              (18) 

The cost of deteriorated items per unit time is 

  
1ckT

b
c

c

C D e
T

T k

 
 

 
.                    (19) 

 

The total relevant cost per unit time for the buyer, bTC , is given by 

   
1ckT

b b b
b b b

c c

A H H De D
TC C C D

T k k T k

  
      

  
.              (20)                                                       

 

From equation (5), total inventory level of the vendor over a period of cT  is  

    2 2

0

1
(1 ) [ ( 1)]

c
c

T
kTkt

c

P P
e dt T e

k k k

    .            (21) 

The quantity of deteriorated items is 

  2 2

1 ckT

c v c

e
PT Q P T

k

 
   

 
.              (22) 

Total relevant cost per unit time for the vendor, vTC , is given by 
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   2 2

1 1ckT

v v
v v v v c

c

H He
TC S A C P C PT

T k k k

     
          

     
.       (23) 

 

Theoretically the continuous production system can run with one production setup forever.  In practice, 

maintenance of the production facilities is inevitable and manufacturing setup is required after the activity.  

In this model, the time unit is “year”.  It is assumed that there is one manufacturing setup every time unit 

and hence there is a setup cost of S per unit time.  

 

With this assumption, (23) becomes 

  2 2

1 1ckT

v v
v v v v c

c

H He
TC S A C P C PT

T k k k

     
          

     
.       (24) 

 

Assuming the unit inventory holding cost and unit deterioration cost during delivery are the same as that 

for the vendor, i.e. borne by the vendor, the holding cost per unit time for deterioration during delivery is  

   

  
2

( 1)( 1)c TkT kTv

c

H D
e e

k T
  ,               (25) 

 

and the deterioration cost during delivery per unit time is   

  0 0( ) ( 1)( 1)cT TkTkT kTv v

c c

C C D
Q e Q e e

T kT
    .           (26) 

 

Adding the costs in (20), (24), (25) and (26), the total relevant system cost per unit time is  

1 cTc

cT

kTkTkT
kTkTb v b v v b

s b v v b

c c

A A H H H De e H DD e
TC C C C De e C D S

T k k k T k k

   
           

  
. 

                     (27) 

 

Alternatively, if the unit inventory holding cost and unit deterioration cost during delivery are the same as 

those for the buyer, i.e. borne by the buyer, (27) becomes 

  

1c

T

cT

cT

kT
kTvb b v

s vb

c c

kT kT
kT kTv b

v b

A A H HD e
TC e C C

T k k k T

H DH De e
C De e C D S

k k

  
  

  

 
    

    

         (28) 

 

If deliveries are assumed to be instantaneous, substitute 0TT   into (27) or (28), the total relevant cost 
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per unit time for the system, sTC , is therefore  

1 cc

c

kTkT
kTb v b v v b

s b v v b

c c

A A H H H De H DD e
TC C C C De C D S

T k k k T k k

   
           

  
   (29) 

                   

The convexity of the cost function (27) for the special case of b vC C  and b vH H , and the general 

case of b vC C  and b vH H  are shown in Appendix C.  As cost functions (28) and (29) are of the 

same form as (27), their convexity follows.  Hence, the optimal cycle time can be found by solving the 

equation 0s

c

d
TC

dT
 .   

 

5.2  Solution Procedure 

For a single-vendor single-buyer supply chain with known demand rate D and cost parameters S, vA , 

vH , vC , bA , bH , bC , and deterioration rate k for the exponentially deteriorating product, the optimal 

solution for minimizing the total system cost per unit time can be found by the following steps:            

 

Step 1:  If b vC C  and b vH H , go to Step 4.  Otherwise, go to Step 2. 

Step 2:  Set 1
b v

b v

H HD
m C C

k k k

 
    

 
 and 2 2

( )TkT

v vDe H C k
m

k


 , if cost function (27) prevails; 

1
TkT b v

b v

H HD
m e C C

k k k

 
    

 
 and 2 2

( )TkT

v vDe H C k
m

k


 , if cost function (28) prevails. 

Let cx kT  and the expression on the left hand side of equation (A.3) in Appendix III can be 

rewritten as 
2

1 2( ) [( 1) 1] ( )x x

b vf x m x e m x e A A      . 

Step 3: Solve ( ) 0f x   for x and the optimal cycle time is given by 
* /cT x k .  Go to Step 6. 

Step 4:  Let cx T  and equation (A.2) in Appendix III can be written as 

        
2( ) ( ) ( )TkT kx

v v b vf x D H C k e x e A A    . 

Step 5:  Solve ( ) 0f x   for x and the optimal cycle time is given by 
*

cT x  

Step 6: Set the production rate at 
*( )* c Tk T T

P De


 .  Hence, the delivery quantity is set as 

*
*

0 ( 1)cT kTkTD
Q e e

k
   to be shipped at intervals of 

*

cT  and The optimal total system cost per 

unit time can be found by substituting 
*

c cT T  into (27), (28) or (29) as appropriate. 
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5.3  Numerical Example and Discussion of Results 

Wee et al. (2008) provided a numerical example for their arbitrarily fixed production rate model.  The 

following example adopts the same parameters used by the authors in order to compare the performances 

of their and our proposed models. 

 

Example 1: 

D = 1000 units per year 

P = 3200 units per year (arbitrarily fixed production rate) 

k = 0.1 per year 

S = $400 

Ab + Av = $25 

Cb = $50 

Cv = $40 

Hb = $5 per unit per year 

Hv = $4 per unit per year 

 

The results of our proposed model with 0.02TT   are summarized in Table 1.  If the unit inventory 

holding cost and unit deterioration cost during delivery are the same as those for the vendor, the optimal 

cycle time is 0.05253 year, the optimal production rate is 1007.28 units per year, and the optimal cost is 

$1510.89 per year.  If the unit inventory holding cost and unit deterioration cost during delivery are the 

same as those for the buyer, the optimal cycle time is 0.05252 year, the optimal production rate is 1007.28 

units per year, and the optimal cost is $1551.04 per year. 

 

Table 1 also shows the results of our proposed model with a deterioration rate of 0.2k   per year.  The 

optimal cycle time decreases slightly when deterioration during transportation is considered; and the 

optimal cost increases as expected. 

 

<< Insert Table 1 about here>> 

   

A comparison of the performances of our proposed model and that of Wee et al. (2008) is shown in Table 

2.  Assuming no deterioration during delivery (i.e. instantaneous delivery), the optimal cost for 0.1k   

per year is $1349.89 in our proposed model, whereas the optimal cost of Wee et al. (2008) is $2695.69 for 

the production rate = 3200 units per year.  With the same cost parameters and deterioration rates of  

0.1k   and 0.2k  , the optimal solutions for Wee et al. (2008) with production rates 3200, 2500 and 

4000 units per year are also shown in Table 2.       
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<< Insert Table 2 about here>> 

 

These results indicate that by having lower inventory related costs and lower set up costs, the proposed 

model results in a lower total system cost per unit time although the number of deliveries has been 

increased.  The optimal costs for the production rates of 2500, 3200, and 4000 units per year illustrates 

(#3) in section 4.4: for 3n  , increasing production rate increases the cost.  The proposed model uses a 

smaller production rate, and gives a lower optimal cost than these arbitrarily fixed production rates.  (The 

proof will be shown in Proposition II.)          

 

The model in Wee et al. (2008) follows the traditional approach that a production cycle includes a 

non-production phase and the production rate is arbitrarily fixed.  Our proposed model presented in 

Section 5.1 does not have a non-production phase and its production rate is one of the decision variables 

for minimizing total system cost.  It is found that the optimal production rate of our model is much lower 

than that of Wee et al. (2008).  Our proposed model with non-stop production is applicable when a 

company has to meet urgent demands of a product.  The concerned production facilities are basically 

fully utilized during the period of non-stop production.  Production planning and labour allocation are 

therefore easier than those of the traditional model which adopts intermittent production, i.e. a 

non-production phase is considered.              

                        

5.4  An Extended Model of Production Rate Dependent Cost Parameters 

In the literature of inventory models in which special discounts, time value of money/inflation are not 

considered, cost parameters are usually assumed to be constant.  For example, Balkhi and Benkherouf 

(1996), Balkhi (1999), Goyal and Giri (2003), and Kumar and Rajput (2015) mentioned in Section 2 are 

non-constant production rate models with constant cost parameters. 

 

Depending on the operation of the production system and accounting methods adopted, some cost 

elements may be related to production rate.  Labour cost per unit is independent of production rate if the 

amount of labour is proportional to production rate, but is inversely proportional to production rate if the 

same amount of labour is involved regardless of production rate.  Machine rates and overhead per unit 

are independent of production rate if they are set as fixed monetary amount per unit, but are inversely 

proportional to production rate if they are set as fixed amount per unit time.   

 

In this extended model, production cost is assumed to be partly constant and partly inversely proportional 

to production rate.  Deterioration costs and inventory holding costs are assumed to be proportional to the 

production cost.  With these assumptions, deterioration costs and inventory holding costs are functions of 

production rates as follows: 
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b b v b

b b a v v a

b b v b

b b a v v a

b a v a b b v b

b a v a b b v b

C C
C C C C

P P

H H
H H H H

P P

C C C C

H H H H

   

   

 

 

                          

                       

                                  

                                 

                

 

Substituting the above cost functions into (29), the total system cost per unit time is given by 

2

1 1 1
( )( ) ( )( )

1
( ) ( )

c c

c

c

c

c c

s

kT kT
vb ba va bb vb

vaba bb vbkT
c c c

kT
kTva vb ba bb bb

va vb ba kT kT

bb vb bb vb ba va
v vab ba

c

TC
A A H H HHD e e

C C C C
T k k k T k k Tke

H H D H CH De
C De C C D S

k k k ke e

H H C C H HD
A A C C

T k k k k k


  

        

       

 
       

       

    
1

( )

1 1
( ) ( ) ( )

c

c

c c

kT

c

kTbb vb va bb
vabb vb bbkT kT

c

vb ba
vb bb

e

T

H H HH
C C C De C

k k k kkT e e

H H D
C C D S

k k




       

                                                                                                 

       

        (30)                  

 

 

Differentiating the cost function (30) with respect to cT , and setting 0cx kT  , the following is  

obtained: 

2 2 2

1 2 3 4 52

1
{ [( 1) 1] ( 1) }x x x x

s x

c c

d
TC p e p x e e p x p x e p x

dT T e
         , where 

1 22

3 4 52 2

0,     ( ) 0,

( )1
( ) 0,             0,   and   0.

bb vb bb vb ba va
b v ba va

bb vb va va bb bb
bb vb

H H C C H HD
p A A p C C

k k k k k

H H D H kC H kC
p C C p p

k k k k k

 
         

 
        

 

 

For finding the optimal cycle time cT
 that minimizes the cost function (30), we set:  

2 2 2

1 2 3 4 52

1
{ [( 1) 1] ( 1) } 0x x x x

s x

c c

d
TC p e p x e e p x p x e p x

dT T e
         

.         (31) 

 

It can be shown (in Appendix D) that a unique solution of (31) exists. 

 

5.4.1  Sensitivity Analysis 

The split of the fixed component and the variable component (e.g. 1:9, 2:8 and 3:7, etc.) of each 

cost of concern may vary among companies as the split depends on the scale of the company and 
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its accounting methods.  Hence, a sensitivity analysis is conducted with Example 2 to 

investigate whether the split would affect the optimal solution of our extended model. 

 

Example 2: 

The following parameters from Example 1 are used: 

D = 1000 units per year            P = 3200 units per year  

S = $400         Ab + Av = $25 

Cb = $50         Cv = $40 

Hb = $5 per unit per year      Hv = $4 per unit per year 

 

These deterioration costs and inventory holding costs are based on a production rate of 3200 units per 

year.  Our sensitivity analysis is conducted by assigning 0.1, 0.2, …, 0.9 as the proportions of the fixed 

components of the concerned costs.  The resulting values of Cba, Cva, Hba  and Hva, etc. are shown in 

Table 3.  

 

    << Insert Table 3 about here>> 

 

For 0.1k  , the optimal solutions are presented in Table 4. 

 

    << Insert Table 4 about here>> 

 

The optimal total system cost per year with the fixed production rate of 3200 units per year in Wee et al. 

(2008) is $2695.69.  The proposed model with deterioration costs and holding costs related to production 

rate gives a smaller optimal cost even when the proportion of fixed components of the costs is as low as 

0.1.  When the proportion of the fixed components is higher, the deterioration costs and holding costs 

per unit are increased by smaller amounts.  This results in a lower optimal cost and hence achieves a 

higher saving when compared with the arbitrarily fixed production rate model.      

 

6.  Propositions related to the Two Models 

6.1  Proposition II 

If a single-vendor single-buyer system supplying an exponentially deteriorating item with a demand rate 

of D satisfies the following conditions: 

 

(a) the rate of deterioration is not more than 0.863, i.e., 0.863k  ; 

(b) the system cycle time is within one year, i.e., 1T  ; 

(c) the cost parameters are constant for production rates greater than or equal to D ; 
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then the proposed non-stop production model always gives a better optimal cost than production rate sP  

of the arbitrarily fixed production rate model if the cost for production rate sP  is optimal with 3n  . 

 

Proof: 

Suppose the cost for production rate sP  is optimal with 3n   and 
*

sT T . 

Then
* /skT n

sP De and hence 
* /* * *( , , ) ( , , )skT n

s s s s sTC P n T TC De n T   
 due to (#3) in Section 3.4. 

 

Consider the following two scenarios: 

(i) the arbitrarily fixed production rate model with production rate 
* /skT n

De  having n deliveries over a 

production cycle of cycle time 
*

sT , and 

(ii) the proposed model with delivery cycle time
* /c sT T n  and production rate 

* /skT n
De . 

 

Both of these two scenarios have the same production rate and the same delivery cycle time.  Therefore, 

they have the same delivery related costs, inventory holding costs and deterioration costs.  The 

production setup cost per unit time of scenario (i) is 
*/ sS T , and that of scenario (ii) is S . 

 

Since 
* 1sT  , we have

*/ sS S T , 
* */ /* * *( , , ) ( , / )s skT n kT n

s s sD c s sDTC De n T TC De T T n TC   , where 

* / *( , / )skT n

sD c sTC De T T n  is the cost of our proposed model with production rate 
* /skT n

De , and  
*

sDTC  

is the overall optimal cost for the proposed model for that system.  Hence, 
* * *( , , )s s s sDTC P n T TC . 

 

In Example 1, there are 4 or 5 deliveries, i.e., 3n  , in a production cycle in the optimal solutions, using 

the model of Wee et al. (2008), for different deterioration rates and arbitrarily fixed production rates (Table 

2).  Therefore, the proposed non-stop production model gives a smaller optimal cost for all these cases. 

 

6.2  Proposition III 

Given that a single-vendor single-buyer system satisfies the conditions in Proposition II.  Suppose for the 

arbitrarily fixed production rate model of production rate sP , the cost is optimal with 2n  .  A 

sufficient condition for our proposed non-stop production model giving a smaller optimal cost is that 

22
k

sP D . 

 

Proof: 
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Suppose at production rate sP , the cost is optimal with 2n   and 
*

sT T .  

  

 
*

*
/2*

* * *

*

*

2( ) ( )2 1
( ,2, ) 1

2

( )( )

skTv b b v b v s
s s s

s s s

v v s p s

s

A A H H kC kC D TS
TC P T e

T T kT k

H kC PT DT

kT

    
     

 

 


    (32) 

where 

*

* /2

( 1)
1

ln 1

1 ( 1)

s

s

kT

s
p

kT

s

D
e

P
T

Dk
e

P

 
 

  
   
 

. 
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where 
*( / 2)sD c sTC T T  is the cost of the continuous production model with production rate  

*

2

skT

De  

and delivery cycle time 

*

2

sT
. 

 

From (32) and (33), the difference of the costs, 
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s
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T
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Let
*/2kTs

sP aDe , then 
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/ 1/ ( )
kTs
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If 2a  , 
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It has been shown in Section 4.2 that for 2n  , ( ) 0pPT
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Finally, 
* * *( / 2) ( ,2, )sD sD c s s s sTC TC T T TC P T    where 

*

sDTC  is the overall optimal cost for the 

continuous production demand-driven production rate model for that system. 

 

Corollary: 

Combining Proposition II and Proposition III, the proposed non-stop production model gives a lower cost 

than that of an arbitrarily fixed production rate model with 22
k

sP De , provided that the optimal solution 

for sP  is having 2n  . 

 

6.3  Procedure for Model Selection for Cost Minimization  

If one has to choose between a certain production rate sP  and the proposed non-stop production model, 

subject to the conditions of 0.863k   and 1T  , the following indicates how the overall optimal cost 

can be found with minimum steps:                          

(a) if 22
k

sP De , the overall optimal cost is the smaller cost of  

(i) the optimal cost for the non-stop production model, and 

(ii) the optimal cost for the production rate sP  with 1n  . 

( b ) if 22
k

sP De , the overall optimal cost is the smallest cost of  

(i) the optimal cost for the non-stop production model,  

(ii) the optimal cost for the production rate sP  with 1n  ,  

(iii) the optimal cost for the production rate sP  with 2n  . 
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7.  Conclusion 

Most production-inventory research assumes a fixed production rate which may not be optimal for 

minimizing total system cost.  In this paper, production rate is considered as a decision variable for an 

integrated vendor-buyer supply chain of an exponentially deteriorating item.  How production rate affects 

the total cost of such a system has been studied in details in Section 4.  It has been shown that if the 

concerned production rates are all larger than 
*/D  , the optimal production rate can be found 

analytically (see Proposition I).  On the other hand, if not all production rates being considered are larger 

than 
*/D  , this paper proposes a heuristic for determining the “optimal” value.  Therefore, for both 

cases, the optimal production rate can be found systematically and it could be considered by 

manufacturers if they wish to minimize total system cost.                                            

  

In traditional production models of deteriorating items, production stops before a production cycle ends 

and therefore a non-production phase is included.  In practice, there are situations that non-stop 

production for some periods of time is desired so as to meet an order urgently.  The urgent order may be 

due to, for example, a tight shipment schedule, an urgent demand or special events, etc.  As such, this 

paper also proposes, in Section 5, a model that considers non-stop production.  In this model, the optimal 

production cycle (and hence the optimal production rate) can be found analytically.   We have shown 

that this model, in many cases, can give a lower cost than the traditional model which has a 

non-production phase and adopts an arbitrarily fixed production rate.  The non-production phase 

considered by traditional models may result in low utilization of production facilities and create manpower 

allocation problems due to intermittent production.  The proposed model can help management tackle 

these problems.  Our numerical results also show that the proposed model can achieve a lower inventory 

level and hence less deterioration than the traditional model.  This implies that the proposed model can 

achieve a better environmental performance.   

 

Furthermore, in the literature of inventory models for deteriorating items, deliveries are assumed to be 

instantaneous and therefore there is no deterioration during deliveries.  However, in practice, this 

assumption may not be valid because transportation time of deteriorating items is often significant, e.g. 

cross-city deliveries.  In view of this, our non-stop production model has been developed in a manner 

that it can also consider deterioration during transportation.   

 

Cost parameters are usually assumed to be constant in the existing literature of production-inventory 

models.  However, some cost parameters may be production rate dependent in practice.  In order to 

cater for this practical concern, this paper presents an extended model in which deterioration cost and 

inventory holding cost consist of a fixed component and a variable component which is inversely 

proportional to production rate.  It is found that our proposed model, with such production rate dependent 
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costs, can also achieve a lower optimal cost than the traditional model that adopts an arbitrarily fixed 

production rate. 

 

There are a few limitations in our proposed model.  Firstly, it only considers a single product and a single 

buyer.  Hence, one direction for future research is to extend the proposed single-vendor single-buyer 

model to a single-vendor multi-buyer supply chain for multi-product.  Secondly, our model only 

considers instantaneous deterioration.  So, another direction is to extend our proposed model to consider 

an integrated production-inventory model considering non-instantaneous deterioration on both the 

vendor’s and the buyer’s sides.  Thirdly, our proposed model assumes a fixed and known demand rate.  

Extending the model to cater for stochastic demands can increase the applicability of our model.  Lastly, 

the objective of our proposed model is to minimize total system cost without any constraint on the amount 

of deterioration.  In view of increasing environmental concerns, there may be more stringent regulations 

in limiting the amount of deterioration generated in a supply chain.  It would be amenable to extend our 

model to consider some constraints on deterioration.   
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Appendix A: Condition for Convergence in Section 4 

A sufficient condition for the convergence of the expansion of the logarithmic term for the production 

time  
/
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 can be found as follows: 
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T
T

n
  , the minimum production rate is 
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without shortages.  For the arbitrarily fixed production rate model, the production rate must satisfy 
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.                          

Hence, ln 2kT   is a sufficient condition for the convergence of the expansion of the logarithmic term 

for any production rate larger than the demand-driven production rate for any number of deliveries.        

 

Appendix B: Proof of the Results (i) to (v) in Section 4.2 

With given values for T and n,  
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Let y kT . 

For 2n  , 

1
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For 3n  , 
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The second derivative 
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Appendix C: Proof of Convexity of the Cost Function (27) in Section 5.1 
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The derivative of the total cost per unit time is given by     
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Setting the derivative to zero, 
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Case (i): b vC C  and b vH H  

This may happen when both the vendor and the buyer belong to the same company; the buyer gets the 

produced goods at cost and the same unit holding cost is applicable to both parties.  
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Since all the quantities are positive, 
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k


 , is an increasing function and has 

no finite limit as cT  , equation (C2) has a unique solution for any 0b vA A   .  The unique 

solution, found by solving the equation by numerical methods, gives the optimum cycle time for 

production and ordering.  Order quantity can be calculated accordingly.      

 

Case (ii): b vC C  and b vH H      

This is the general case when the vendor sells the goods to the buyer with profit and the buyer’s unit 

holding cost is higher than the vendor’s unit holding cost.  
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Hence, there is a unique solution to equation (C3) for any 0b vA A  .    
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Let   2 2

4 2 ( 1) 1c ckT kT

c cy k T e kT e    . 

Then 4(0) 0y   and 
3 24 0ckT

c

c

dy
k T e

dT
  . 

Hence, 

2

2
0s

c

d
TC

dT
  

The total cost function is therefore convex and there is a unique delivery cycle time that minimizes the 

total system cost per unit time for the proposed continuous production model.    

 

 

Appendix D: Proof of Convexity of the Cost Function (30) in Section 5.4 

2 2

1 2 3 4 52

1
{ [( 1) 1] ( 1) } 0x x x x

s

c c

d
TC p p x e p x e p x e p x e

dT T

           .  

Set 2 2

2 3 4 5 1( ) [( 1) 1] ( 1)x x x xh x p x e p x e p x e p x e p         . 

2 2

2 3 4 5 10 ( ) [( 1) 1] ( 1) 0x x x x

s

c

d
TC h x p x e p x e p x e p x e p

dT

            .   (D1) 

As ( 1) 1 0xx e    for 0x  , 
2 2

2 3 4 5[( 1) 1] ( 1) 0x x x xp x e p x e p x e p x e         and it is an 

increasing function for 1x   as shown below:  

For 1x  ,    (In general, 1k  ,  and 1cT  .  Hence 1x   suffices.)   

2 2

2 3 4 5

2 3 4 5

2 4 2
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( 2) (2 )

1
( 2) ( ) (2 )

1
( 2) ( ) (1 ) 0

x x x x

x x x x

x x x xbb vb bb bb
bb vb

x x x xvb bb bb
vb

d
p x e p x e p x e p x e

dx

p xe p xe p x xe p x xe

H H H kC
p xe p x xe C C xe x xe

k k k k

H H kC
p xe p x xe C xe x xe

k k k

 

 

 

 

     

     


        


       

 

Hence, we also have '( ) 0h x  .   

Since 
2

2 4lim [( 1) 1]x x

x
p x e p x e


     , and  
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2 3 5
3 5

(1) (2)
lim ( 1) lim lim 0x x

x xx x x

p p
p x e p x e

e e

 

  
     .  (by L’Hopital’s Rule) 

Hence, 
2 2

2 3 4 5[( 1) 1] ( 1)x x x xp x e p x e p x e p x e        is positive, increasing and has no finite 

limit.  There is a unique solution 
*x  for equation (31) for any 1 0p  .  

As 
2

( )
s

c c

d h x
TC

dT T
 ,  

22

2 4

'( ) 2 ( )c c
s

c c

T h x T h xd
TC

dT T


 . 

Since 
*( ) 0h x   and 

*'( ) 0h x   as it is an increasing function, 

2

2
0s

c

d
TC

dT
  at 

*x x . Therefore, 

the unique solution of equation (31) gives the minimum total cost per unit time for the cost function (30).   
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Tables: 

 

Deterioration rate 

0.1k   

No deterioration during 

delivery 

Deterioration during 

delivery (Case 1) 

Deterioration during 

delivery (Case 2) 

Optimal cycle time 

(year) 
0.0527 0.05253 0.05252 

Optimal prod. rate 

(units/year) 
1005.27 1007.28 1007.28 

Optimal total cost 

per unit time 

($ per year) 

1349.89 1510.89 1551.04 

Deterioration rate 

0.2k   

No deterioration during 

delivery 

Deterioration during 

delivery (Case 1) 

Deterioration during 

delivery (Case 2) 

Optimal cycle time 

(year) 
0.04286 0.04278 0.04277 

Optimal prod. rate 

(units/year) 
1008.61 1012.635 1013.633 

Optimal total cost 

per unit time 

($ per year) 

1564.30 1806.85 1867.23 

Case 1: the unit inventory holding cost and unit deterioration cost during delivery are same as that for 

the vendor 

Case 2: the unit inventory holding cost and unit deterioration cost during delivery are same as that for 

the buyer 

    

 Table 1:  Results for having/not having deterioration during delivery (Example 1).   
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Deterioration rate 

0.1k   

Arbitrarily fixed production rate 

(Wee et al. (2008) model) 

Optimal production rate of our 

proposed model: 

1005.27/ year 2500/year 3200/year 4000/year 

No. of setups 2.4897 2.5712 2.7484 1 

No. of deliveries 12.4483 12.8558 10.9937 19.0223 

No. of deliveries 

in a production 

cycle 

5 5 4 ------ 

Inventory related 

cost 
1304.23 1345.83 1369.32 474.33 

Total annual cost 2611.30 2695.69 2743.53 1349.89 

Deterioration rate 

0.2k   

Arbitrarily fixed production rate 

(Wee et al. (2008) model) 

Optimal production rate of our 

proposed model:  

1008.61/year 2500/year 3200/year 4000/year 

No. of setups 3.0498 3.1498 3.3672 1 

No. of deliveries 15.2489 15.7492 13.4687 23.3340 

No. of deliveries 

in a production 

cycle 

5 5 4 ------ 

Inventory related 

cost 
1597.35 1648.30 1677.06 580.95 

Total annual cost 3198.48 3301.97 3360.65 1564.30 

 

Table 2: Comparison of Wee et al. (2008) model with our proposed model for instantaneous delivery 

(Example 1).  
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Proportion 

of fixed 

component 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

baC  5 10 15 20 25 30 35 40 45 

vaC  4 8 12 16 20 24 28 32 36 

baH  0.5 1 1.5 2 2.5 3 3.5 4 4.5 

vaH  0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 

bbC  144000 128000 112000 96000 80000 64000 48000 32000 16000 

vbC  115200 102400 89600 76800 64000 51200 38400 25600 12800 

bbH  14400 12800 11200 9600 8000 6400 4800 3200 1600 

vbH  11520 10240 8960 7680 6400 5120 3840 2560 1280 

  

b b v b
v v ab b a

b b v b
v v ab b a

C C
C C C C

P P

H H
H H H H

P P

   

   

                          

                       

 

Table 3: Fixed and variable components of cost parameters for Example 2. 
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Proportion 

of fixed 

component 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

*

cT  
0.0306 0.0318 0.0331 0.0346 0.0364 0.0385 0.0409 0.0439 0.0477 

*
ckT

De  1003.1 1003.2 1003.3 1003.5 1003.7 1003.9 1004.1 1004.4 1004.8 

bC  148.56 137.59 126.63 115.67 104.71 93.75 82.80 71.86 60.92 

vC  118.85 110.08 101.30 92.53 83.77 75.00 66.24 57.49 48.74 

bH  14.86 13.76 12.66 11.57 10.47 9.38 8.28 7.19 6.09 

vH  11.89 11.01 10.13 9.25 8.38 7.50 6.62 5.75 4.874 

*

sTC S  
1636.5 1575.0 1511.0 1444.1 1374.1 1300.3 1222.1 1138.5 1048.4 

*

sTC  
2036.5 1975.0 1911.0 1844.1 1774.1 1700.3 1622.1 1538.5 1448.4 

Table 4: Optimal solutions for Example 2. 
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Figures: 

 

0Q

cT Time t
0

bIInventory level

 

 

Fig. 1: Inventory level of the buyer. 

 

 

vQ

pT Time t
0

vIInventory level

 

 

Fig. 2: Inventory level of the vendor. 
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Fig. 3: The inventory levels of the vendor, that during delivery and that of the buyer. 




